Esercizi di Analisi II I1

17 settembre 2021
This book is the result of a collaborative effort of a community of people like you, who believe that knowledge only grows if shared. We are waiting for you!

Get in touch with the rest of the team by visiting http://join.wikitolearn.org

You are free to copy, share, remix and reproduce this book, provided that you properly give credit to original authors and you give readers the same freedom you enjoy. Read the full terms at https://creativecommons.org/licenses/by-sa/3.0/
Indice

1 Limiti di funzioni in più variabili 1
 1.1 Richiami teorici ... 1
 1.2 Calcolo di limiti .. 2
 1.3 Punti di discontinuità ... 8

2 Differenziabilità 13
 2.1 Richiami teorici ... 13
 2.2 Calcolo di derivate parziali e regola della catena 14
 2.3 Differenziabilità di funzioni generiche 21
 2.4 Differenziabilità di funzioni dipendenti da un parametro 33

3 Studio di punti critico 41
 3.1 Richiami teorici ... 41
 3.2 Studio di punto critico ... 42

4 Equazioni differenziali 60
 4.1 Equazioni differenziali di primo ordine 60
 4.1.1 Equazioni a variabili separabili 60
 4.1.2 Equazioni del tipo y’(t) = f(at+by) 61
 4.1.3 Equazioni omogenee .. 62
 4.1.4 Equazioni lineari ... 64
 4.1.5 Equazioni di Bernoulli .. 66
 4.2 Equazioni differenziali miste 69
 4.3 Esistenza e unicità delle soluzioni 77
 4.3.1 Richiami teorici ... 77
 4.4 Equazioni differenziali di ordine n 87
 4.4.1 Richiami teorici ... 87

5 Curve 97
 5.1 Richiami teorici ... 97
5.2 Curva .. 98
5.3 Applicazione diretta delle formule 100
5.4 Parametrizzazione di curve 102

6 Teorema della funzione implicita 111
 6.1 Richiami teorici .. 111
 6.2 Funzioni implicite 111

7 Moltiplicatori di Lagrange 125
 7.1 Richiami teorici .. 125
 7.2 Moltiplicatori di Lagrange 125

8 Forme differenziali ... 127
 8.1 Richiami teorici .. 127
 8.2 Calcolo di integrali curvilinei 128
 8.3 Verifica dell’esattezza e calcolo di primitive 132
 8.4 Forme differenziali definite su aperti non stellati e formule di Gauss-Green 138
 8.4.1 Richiami teorici 138

9 Integrali multipli .. 145
 9.1 Richiami teorici .. 145
 9.2 Integrali doppi ... 145
 9.3 Integrali doppi con cambio di variabili 152
 9.4 Integrali tripli ... 157
 9.4.1 Richiami teorici 157
 9.5 Esercizi difficili 172

10 Integrali di superficie 177
 10.1 Richiami teorici 177
 10.2 Integrali di superficie 177

11 Teoremi di Green Stokes e della divergenza 187
 11.1 Richiami teorici 187
 11.2 Teoremi di Green Stokes e della divergenza 188

12 Successioni ... 198
 12.1 Richiami teorici 198
 12.2 Successioni ... 198
13 Serie 210
 13.1 Serie generiche .. 210
 13.1.1 Richiami teorici 210
 13.1.2 Esercizi ... 211
 13.2 Serie di potenze 219
 13.2.1 Richiami teorici 219
 13.2.2 Esercizi ... 220
 13.3 Serie di Fourier 226

14 Fonti per testo e immagini; autori; licenze 228
 14.1 Testo .. 228
 14.2 Immagini ... 230
 14.3 Licenza dell’opera 230
Capitolo 1

Limiti di funzioni in più variabili

1.1 Richiami teorici

1. Si dice che
\[\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L \]
se e solo se
\[\forall \varepsilon > 0 \exists \delta > 0 \text{ t.c. } |(x,y) - (x_0,y_0)| < \delta \implies |f(x,y) - L| < \varepsilon. \]

2. Sia \(f: D \to \mathbb{R} \) e sia \((x_0, y_0) = O\). Supponiamo che
\[\lim_{(x,y)\to(0,0)} f(x,y) = L \]
Allora se \(g: I \subset \mathbb{R} \to \mathbb{R} \) è una funzione continua in \(t = 0 \) tale che \(g(0) = 0 \) segue che
\[\lim_{t \to 0} f(t, g(t)) = L. \]
In genere questo teorema si usa per mostrare che un certo limite non esiste.

3. Prendo nel piano un punto \((x, y)\) diverso da \((x_0, y_0)\). Considero il segmento di lunghezza \(\rho = |(x, y) - (x_0, y_0)| \) che unisce i due punti, e forma un angolo \(\theta \) univocamente determinato con l’asse orizzontale.Introduco le coordinate polari ponendo
\[x = \rho \cos \theta, \quad y = \rho \sin \theta \]
Allora segue che
\[\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{\rho \to 0^+} f(\rho \cos \theta, \rho \sin \theta) \]
Il limite a secondo membro deve essere calcolato uniformemente in \(\theta \), cioè si deve avere che
\[\forall \varepsilon > 0 \exists \delta > 0 \text{ t.c. } |\rho| < \delta \implies \sup_{\theta \in [0,2\pi]} |f(\rho \cos \theta, \rho \sin \theta) - L| < \varepsilon \]
Capitolo 1. Limiti di funzioni in più variabili

In particolare, condizione sufficiente affinché

\[\lim_{\rho \to 0} f(\rho \cos \theta, \rho \sin \theta) = L \]

è che esista una funzione \(\phi \) tale che per ogni \(\theta \)

\[|f(\rho \cos \theta, \rho \sin \theta) - L| \leq \phi(\rho) \forall \theta. \]

4. Supponiamo che esista \(\phi \) tale che \(\phi(\rho) \to +\infty \) se \(\rho \to +\infty \) e tale che

\[f(\rho \cos \theta, \rho \sin \theta) \geq \phi(\rho) \forall \theta \]

oppure

\[\inf_{\theta \in [0,2\pi]} f(\rho \cos \theta, \rho \sin \theta) \geq \phi(\rho) \]

allora

\[\lim_{\rho \to +\infty} f(\rho \cos \theta, \rho \sin \theta) = \infty \]

uniformemente in \(\theta \).

1.2 Calcolo di limiti

Esercizio 1.1

Calcolare

\[\lim_{(x, y) \to (0,0)} \frac{x^2 y^2}{x^2 + y^6}. \]

Riscrivo il limite come

\[\lim_{(x, y) \to (0,0)} \frac{x^2}{x^2 + y^6} * y^2 = \]

Il primo fattore, \(\frac{x^2}{x^2 + y^6} \) è \(\leq 1 \), quindi in modulo \(\frac{x^2}{x^2 + y^6} * y^2 \) è minore di \(|y^2| \).

Siccome \(\lim_{(x, y) \to (0,0)} |y^2| = 0 \) allora per il teorema del confronto il limite di partenza esiste e vale 0.

Esercizio 1.2

Calcolare

\[\lim_{(x, y) \to (0,0)} f(x, y) \]

con

\[f(x, y) = \frac{x^2 y^2}{\sin(x^4 + y^4)}. \]
L’origine, in cui il seno al denominatore si annulla, è un punto di accumulazione
del dominio della funzione.

Devo risolvere la forma indeterminata \([0/0]\) : ricordando che

\[
\lim_{t \to 0} \frac{t}{\sin t} = 1
\]
moltiplico e divido \(f(x, y)\) per \(x^4 + y^4\) :

\[
\lim_{(x,y) \to (0,0)} \frac{x^2y^2}{x^4 + y^4} \cdot \frac{x^4 + y^4}{\sin(x^4 + y^4)} =
\]

Il secondo fattore, per il limite notevole scritto sopra, tende a 1. Rimane quindi
da calcolare

\[
\lim_{(x,y) \to (0,0)} \frac{x^2y^2}{x^4 + y^4} =
\]

Calcolo il limite lungo due curve differenti. Osservo che lungo la curva \(y = 0\) si ha:

\[
limit_{x \to 0} f(x, 0) = 0
\]
invece lungo la curva \(y = x\) si ha

\[
\lim_{x \to 0} f(x, x) = \lim_{x \to 0} \frac{x^4}{x^4 + x^4} = 1/2
\]

Siccome il limite assume valori diversi sulle due curve considerate, in bse al
teorema enunciato precedentemente il limite non esiste.

Osservazione 1.1

Dimostro nel dettaglio che

\[
\lim_{(x,y) \to (0,0)} \frac{x^4 + y^4}{\sin(x^4 + y^4)} = 1
\]

Parto dal presupposto che \(x^4 + y^4 \to 0\) se \((x, y) \to 0\) , allora per definizione

\[
\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \text{ t.c. } |(x, y)| < \delta \rightarrow x^4 + y^4 < \varepsilon \quad \text{formula 1}
\]

Inoltre per il limite notevole

\[
\forall \varepsilon > 0 \exists \delta' > 0 \text{ t.c. } |t| < \delta' \rightarrow \left| \frac{t}{\sin t} - 1 \right| < \varepsilon \quad \text{formula 2}
\]

Allora

\[
\forall \varepsilon > 0 \exists \delta' \text{ come nella formula 2} \quad \text{t.c. } \forall |(x, y)| < \delta(\delta') |x^4 + y^4| < \delta', \text{ allora}
\]
Capitolo 1. Limiti di funzioni in più variabili

\[\left| \frac{x^4 + y^4}{\sin(x^4 + y^4)} - 1 \right| < \varepsilon \]

Allora

\[\lim_{(x,y) \to (0,0)} \frac{x^4 + y^4}{\sin(x^4 + y^4)} = 1 \]

Esercizio 1.3

Calcolare

\[\lim_{(x,y) \to (0,0)} \frac{1 - \cos(xy)}{\log(1 + x^2 + y^2)} \]

Anche in questo caso devo risolvere la forma di indecisione \([0/0]\). Possiamo usare il metodo dell’esercizio precedente scrivendo

\[\lim_{(x,y) \to (0,0)} \frac{1 - \cos(xy)}{x^2y^2} \cdot \frac{x^2y^2}{\log(1 + x^2 + y^2)} = \]

Siccome

\[\lim_{t \to 0} \frac{1 - \cos t}{t^2} = 1/2 \]

Si può dimostrare che

\[\frac{1 - \cos(xy)}{y^2} \to 1/2 \iff (x, y) \to (0, 0) \]

Allora il primo fattore vale 1/2 e si calcola:

\[1/2 \cdot \lim_{(x,y) \to (0,0)} \frac{x^2y^2}{\log(1 + x^2 + y^2)} = \]

Siccome

\[\lim_{t \to 0} \frac{\log(1 + t)}{t} = 1 \]

si ha

\[\lim_{(x,y) \to (0,0)} \frac{\log(1 + x^2 + y^2)}{x^2 + y^2} = 1 \]

Allora:

\[1/2 \cdot \lim_{(x,y) \to (0,0)} \frac{x^2y^2}{\log(1 + x^2 + y^2)} = \]
Capitolo 1. Limiti di funzioni in più variabili

\[\frac{1}{2} \cdot \lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2 + y^2} = \]

\[\lim_{(x,y) \to (0,0)} \frac{x^2}{x^2 + y^2} \cdot y^2 \leq \lim_{(x,y) \to (0,0)} \frac{y^2}{2} = 0 \]

Allora il limite di partenza tende a 0.

Per esercizio, calcolo quest’ultimo limite anche in coordinate polari.

\[\lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2 + y^2} = \]

\[= \lim_{\rho \to 0} \frac{\rho^4 \cos^2 \theta \sin^2 \theta}{\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta} = \]

\[\lim_{\rho \to 0} \frac{\rho^4 \cos^2 \theta \sin^2 \theta}{\rho^2} = \]

\[\lim_{\rho \to 0} \rho^2 \cos^2 \theta \sin^2 \theta = \]

Calcolo il limite uniformemente in \(\theta \). Considero

\[\sin^2 \theta \leq 1 \quad \cos^2 \theta \leq 1 \quad \Rightarrow \quad |\rho^2 \cos^2 \theta \sin^2 \theta| \leq \rho^2 \]

\[\sup_{\theta \in [0,2\pi]} \rho^2 \cos^2 \theta \sin^2 \theta \leq \rho^2 \quad \rho^2 \to 0 \iff \rho \to 0 \]

e e si ottiene lo stesso risultato di prima.

Esercizio 1.4

Sia \(\alpha \geq 0 \). Calcolare

\[\lim_{(x,y) \to (0,0)} \frac{(x^2 + y^4)^\alpha}{x^4 + y^2}. \]

Ho una forma indeterminata. Provo a calcolare il limite lungo direzioni fissate (il limite lungo queste curve dipende dal valore di \(\alpha \)).

Prendo prima la curva \(y = 0 \), e ottengo

\[L = \lim_{x \to 0} f(x,0) = \lim_{x \to 0} \frac{x^{2\alpha}}{x^4} = \lim_{x \to 0} x^{2\alpha - 4} \]

Allora

\[\alpha > 2 \quad \Rightarrow \quad 2\alpha - 4 \geq 0 \quad \Rightarrow \quad L = 0 \]

\[\alpha = 2 \quad \Rightarrow \quad 2\alpha - 4 = 0 \quad \Rightarrow \quad L = 1 \]

\[\alpha < 2 \quad \Rightarrow \quad 2\alpha - 4 < 0 \quad \Rightarrow \quad L = \infty \]

Prendiamo un’altra curva e vediamo se i valori dei limiti coincidono. Considero la curva \(x = 0 \):
\[L = \lim_{y \to 0} f(0, y) = \lim_{y \to 0} \frac{y^{4\alpha}}{y^2} = \]
\[\lim_{y \to 0} y^{4\alpha - 2} = (y^2)^{2\alpha - 1} \]
\[\alpha > 1/2 \quad \rightarrow \quad L = 0 \]
\[\alpha = 1/2 \quad \rightarrow \quad L = 1 \]
\[\alpha < 1/2 \quad \rightarrow \quad L = \infty \]

Confronto i due risultati ottenuti, riassunti nella tabella.

<table>
<thead>
<tr>
<th>valore di (\alpha)</th>
<th>limite lungo (y = 0)</th>
<th>limite lungo (x = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha > 2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\alpha = 2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(1/2 < \alpha < 2)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(\alpha = 1/2)</td>
<td>(\infty)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha < 1/2)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

Il limite potrebbe esistere solo quando in entrambi i casi ha lo stesso valore, e quindi quando \(\alpha > 2 \) oppure \(\alpha < 1/2 \).

Caso 1: \(\alpha > 2 \). Calcolo il limite in coordinate polari per \(\alpha > 2 \).

\[\lim_{\rho \to 0} \frac{(\rho^2 \cos^2 \theta + \rho^4 \sin^4 \theta)\alpha}{\rho^4 \cos^4 \theta + \rho^2 \sin^2 \theta} = \]

e il limite deve valere 0 uniformemente in \(\theta \).

Considero

\[\left| \frac{(\rho^2 \cos^2 \theta + \rho^4 \sin^4 \theta)\alpha}{\rho^4 \cos^4 \theta + \rho^2 \sin^2 \theta} \right| \]

Raccolgo \(\rho^{2\alpha} \) al numeratore, mostrò però che raccogliendo al denominatore \(\rho^2 \) non si arriva a nessun risultato, infatti si trova:

\[\rho^{2\alpha - 2} \left| \frac{(\cos^2 \theta + \rho^2 \sin^4 \theta)\alpha}{\rho^2 \cos^4 \theta + \sin^2 \theta} \right| \]

e si ha un denominatore che dipende ancora da \(\rho \).

Siccome \(\alpha > 2 \), per mostrare che il limite vale 0 devo dimostrare che

\[\sup_{\theta \in [0, 2\pi]} \left| \frac{(\rho^2 \cos^2 \theta + \rho^4 \sin^4 \theta)\alpha}{\rho^4 \cos^4 \theta + \rho^2 \sin^2 \theta} \right| \]

è una quantità limitata, ed è possibile maggiorarla con un’altra quantità che tende a 0. Chiamo \(p \) la quantità in modulo.
Con \(\rho < 1 \), \(\rho^2 > \rho^4 \), inoltre \(\rho^2 \sin^2 \theta + c \geq \rho^4 \sin^2 \theta + c \). Quindi posso scrivere

\[
p \leq \frac{\rho^{2\alpha} \cdot [\cos^2 \theta + \rho^2 \sin^4 \theta]^\alpha}{\rho^4 \cos^4 \theta + \rho^4 \sin^2 \theta}
\]

Raccoglio \(\rho^4 \): rispetto al raccoglimento precedente il denominatore non dipende da \(\rho \).

\[
p \leq \frac{\rho^{2\alpha-4} \cdot [\cos^2 \theta + \rho^2 \sin^4 \theta]^\alpha}{\cos^4 \theta + \sin^2 \theta}
\]

Posso maggiorare il numeratore in questo modo:

\[
(\cos^2 \theta + \rho^2 \sin^4 \theta)^\alpha \leq (1 + 1)^\alpha = 2^\alpha
\]

Il denominatore \(\cos^4 \theta + \sin^2 \theta \) è sempre maggiore di una costante positiva perché seno e coseno non si annullano simultaneamente.

Quindi

\[
p \leq \rho^{2\alpha-4} - \frac{2^\alpha}{c} \forall \theta \quad \alpha > 2
\]

e il sup è maggiorato da una quantità che tende a 0, allora il limite esiste e fa 0.

Caso 2: \(\alpha < 1/2 \)

\[
\lim_{\rho \to 0} \frac{(\rho^2 \cos^2 \theta + \rho^4 \sin^4 \theta)^\alpha}{\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta} =
\]

Ora bisogna dimostrare che il limite uniforme in \(\theta \) è \(+\infty\) per \(\rho \to 0 \), e questo avviene se l’estremo inferiore di \(p \) al variare di \(\theta \) in \([0, 2\pi]\) è maggiore o uguale di \(M \).

Considero quindi

\[
\inf_{\theta \in [0, 2\pi]} \left| \frac{(\rho^2 \cos^2 \theta + \rho^4 \sin^4 \theta)^\alpha}{\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta} \right|
\]

siccome \(\rho < 1 \), allora \(\rho^2 > \rho^4 \).

il denominatore \(\rho^4 \cos^4 \theta + \rho^2 \sin^2 \theta \) è minore di \(\rho^2 (\cos^4 \theta + \sin^2 \theta) \).

Quindi

\[
p > \frac{(\rho^2 \cos^2 \theta + \rho^4 \sin^4 \theta)^\alpha}{\rho^2 (\cos^4 \theta + \sin^2 \theta)}
\]

Siccome \(\rho^4 < \rho^2 \), posso scrivere

\[
p > \frac{(\rho^4 \cos^2 \theta + \rho^4 \sin^4 \theta)^\alpha}{\rho^2 (\cos^4 \theta + \sin^2 \theta)}
\]

allora raccoglio \(\rho^{4\alpha} \) al numeratore e \(\rho^2 \) al denominatore:
\[p > \rho^{4\alpha - 2} \cdot \frac{(\cos^2 \theta + \sin^4 \theta)^\alpha}{\cos^4 \theta + \sin^2 \theta} \]

\[p > \rho^{4\alpha - 2} \cdot C \quad C \neq 0 \]

\[\alpha < 1/2 \] , la quantità che dipende da \(\theta \) è maggiore o uguale da una costante positiva, e \(\rho^{4\alpha - 2} \to +\infty \)

Allora anche in questo caso il limite esiste.

Esercizio 1.5

Calcolare

\[\lim_{|x,y| \to +\infty} x^4 + y^4 - xy. \]

ho una forma indeterminata \(+\infty - \infty \).

Introduciamo le coordinate polari

\[f(\rho \cos \theta, \rho \sin \theta) = \rho^4 \cos^4 \theta + \rho^4 \sin^4 \theta - \rho^2 \sin \theta \cos \theta \]

Maggioro questa funzione con una funzione \(\phi \) che dipende da \(\rho \)
\(\cos^4 \theta + \sin^4 \theta \) ha un minimo in \([0, 2\pi] \) essendo continua in un compatto. Il minimo è una costante sempre positiva perché la funzione è somma di funzioni positive che non si annullino mai contemporaneamente. Inoltre

\[|\sin \theta \cos \theta| \leq 1 \]

Allora

\[f(\rho \cos \theta, \rho \sin \theta) \geq \rho^4 \cdot c - \rho^2 \]

che è una funzione dipendente solo da \(\rho \), che tende a \(+\infty \) per \(\rho \to +\infty \). Allora il limite di partenza tende a \(+\infty \).

1.3 Punti di discontinuità

Esercizio 1.6

Determinare i punti di discontinuità della funzione.

\[f(x, y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \iff (x, y) \neq (0, 0) \\ 0 & \iff (x, y) = (0, 0) \end{cases} \]

Per \((x, y) \neq (0, 0) \) f è continua (composizione di funzioni continue) e ben definita.
Se f è continua in \((0, 0)\) il suo limite deve valere 0. Verifico se questo avviene in tutte le direzioni, calcolo ad esempio il limite sulle rette della forma \(y = mx \):
\[
\lim_{x \to 0} \frac{mx^3}{x^4 + m^2x^2} = \\
\lim_{x \to 0} \frac{mx}{m^2 + x^2} = 0
\]

Allora \(f \to 0 \) se mi avvicino all’origine lungo qualsiasi retta. Ma se considero una parabola di equazione \(y = mx^2 \), il limite lungo tale curva è:

\[
\lim_{x \to 0} \frac{m^2x^4}{x^4 + m^2x^4} = \frac{m}{1 + m^2}
\]

Quindi se mi avvicino all’origine lungo la parabola il limite non vale 0, concluso che il limite non esiste. Quindi \(f \) non è continua in \((0, 0)\).

Esercizio 1.7

Stabilire in quali punti del suo dominio ciascuna delle seguenti funzioni reali definite su \(\mathbb{R}^2 \) è continua:

\[
f_1(x, y) = \begin{cases}
\frac{x^4 + xy - y^4}{x^2 + |y|} & \text{se } (x, y) \neq (0, 0) \\
0 & \text{se } (x, y) = (0, 0)
\end{cases}
\]

\[
f_2(x, y) = \begin{cases}
\frac{x^4 + y^2}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\
1 & \text{se } (x, y) = (0, 0)
\end{cases}
\]

\[
f_3(x, y) = \begin{cases}
\frac{xy(\arctan x + y)}{x + y} & \text{se } x \neq -y \\
0 & \text{se } x = -y
\end{cases}
\]

\[
f_4(x, y) = \begin{cases}
\frac{(\sin(y^2) + \sin(x^2 - 1))(e^{(x^2 + y^2 - 1)^3} - 1)}{(x^2 + y^2 - 1)^4} & \text{se } x^2 + y^2 - 1 > 0 \\
0 & \text{se } x^2 + y^2 - 1 \leq 0
\end{cases}
\]

\[
f_5(x, y) = \begin{cases}
\frac{\arctan(xy)}{y} & \text{se } y \neq 0 \\
0 & \text{se } y = 0
\end{cases}
\]

\[
f_6(x, y) = \begin{cases}
\frac{xy^3}{x^4 + y^2} & \text{se } (x, y) \neq (0, 0) \\
0 & \text{se } (x, y) = (0, 0)
\end{cases}
\]

\[
f_7(x, y) = \begin{cases}
\frac{x}{x + y} & \text{se } x \neq -y \\
\frac{1}{2} & \text{se } x = -y
\end{cases}
\]

Suggerimento: per studiare la continuità di \(f_3 \) in \((0, 0)\), si provi a considerare la restrizione di \(f \) all’insieme

\[A = \{(x, y) \in \mathbb{R}^2 : y = -x + x^5\}.\]
1. \(f_1(x, y) = \begin{cases} \frac{x^4 + xy - xy^3}{x^2 + |y|} & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0), \end{cases} \)

La funzione è continua e ben definita in tutti i punti diversi dall’origine. Studio la continuità di \(f \) nell’origine: se \(f \) è continua in tale punto, il limite deve valere 0.

\[
\lim_{P \to (0,0)} \frac{x^4 + xy - xy^3}{x^2 + |y|} =
\]

Spezzo la frazione in tre parti:

\[
\lim_{P \to (0,0)} \frac{x^4}{x^2 + |y|} + \lim_{P \to (0,0)} \frac{xy}{x^2 + |y|} + \lim_{P \to (0,0)} \frac{-xy^3}{x^2 + |y|} =
\]

L’ipotesi è che il limite tenda a 0, allora cerco di minorare il limite con una quantità che tende a 0.

\[
\leq \lim_{P \to (0,0)} \frac{x^4}{x^2 + |y|} + \lim_{P \to (0,0)} \frac{xy}{x^2 + |y|} + \lim_{P \to (0,0)} \frac{-xy^3}{x^2 + |y|} =
\]

Allora per il teorema del confronto il limite di partenza vale 0, e quindi la funzione è continua nell’origine e su tutto \(\mathbb{R} \).

2. \(f_2(x, y) = \begin{cases} \frac{x^4 + y^2}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0), \\ 1 & \text{se } (x, y) = (0, 0), \end{cases} \)

Verifico la continuità nell’origine.

\[
\lim_{P \to (0,0)} \frac{x^4 + y^2}{x^2 + y^2} =
\]

Considero la restrizione della funzione all’asse delle ascisse, cioè calcolo il limite lungo \(y = 0 \).

\[
\lim_{x \to 0, y=0} \frac{x^4}{x^2} = x^2 \to 0
\]

Allora \(f(P) \neq f(0,0) = 1 \) per \(P = (0, y) \to (0, 0) \), quindi la funzione non è continua nell’origine.

3. \(f_3(x, y) = \begin{cases} \frac{xy(\arctan x + y)}{x + y} & \text{se } x \neq -y, \\ 0 & \text{se } x = -y, \end{cases} \)

par La funzione è continua e ben definita in tutti i punti del piano esclusa la bisettrice del secondo e quarto quadrante, cioè escluso l’insieme \{\((x, y) \) t.c. \(x + y = 0 \)\).

\[
\lim_{x+y \to 0} \frac{xy(\arctan x + y)}{x + y} =
\]
Nei punti diversi dall’origine il limite è $+\infty$. Invece, nell’origine, considero la restrizione di f ad $A = \{(x, y) \in \mathbb{R}^2 : y = -x + x^5\}$ e ottengo

$$\lim_{x+y \to 0, y = -x + x^5} \frac{x(-x + x^5)(\arctan x - x + x^5)}{x^5} =$$

Sviluppando l’arcotangente si ha \(\arctan x = x - x^3/3 + x^5/5 + o(x^5) \) quindi ottengo:

$$\lim_{x+y \to 0} \frac{x(-x + x^5)(x - x^3/3 + x^5/5 + o(x^5) - x + x^5)}{x^5} =$$

eseguendo i prodotti e trascurando i termini moltiplicati per $o(x^5)$:

$$\lim_{x+y \to 0} \frac{x^5/3 - 6x^7/5 - x^9/3 + 6x^{11}/5}{x^5} =$$

$$\lim_{x+y \to 0} 1/3 - 6x^2/5 - x^4/3 + 6x^{16}/5 = 1/3$$

e la funzione non è continua nell’origine.

4.

$$f_4(x, y) = \begin{cases} \frac{(\sin(y^2) + \sin(x^2 - 1))(e^{(x^2+y^2-1)^3} - 1)}{(x^2 + y^2 - 1)^4} & \text{se } x^2 + y^2 - 1 > 0, \\ 0 & \text{se } x^2 + y^2 - 1 \leq 0, \end{cases}$$

Valuto il limite nei casi in cui $x^2 + y^2 - 1 = 0$, perché negli altri punti la funzione è continua e ben definita.

$$\lim_{x^2+y^2-1 \to 0} \frac{(\sin(y^2) + \sin(x^2 - 1))(e^{(x^2+y^2-1)^3} - 1)}{(x^2 + y^2 - 1)^4} =$$

Uso l’asintotico:

$$e^{\varepsilon n} - 1 \sim \varepsilon_n, \quad \varepsilon \to 0$$

$$\lim_{x^2+y^2-1 \to 0} \frac{(\sin(y^2) + \sin(x^2 - 1))(x^2 + y^2 - 1)^3}{(x^2 + y^2 - 1)^4} =$$

$$\lim_{x^2+y^2-1 \to 0} \frac{\sin(y^2) + \sin(x^2 - 1)}{x^2 + y^2 - 1}$$

Il limite vale ∞ per ogni (x, y), tranne nel caso $(x, y) \to (\pm 1, 0)$, in cui si ha la forma di indicizzazione $[0/0]$. Se $(x, y) \to (\pm 1, 0)$ sviluppo il seno:

$$\lim_{x^2+y^2-1 \to 0} \frac{y^2 + o(y^2) + (x^2 - 1) + o(x^2 - 1)}{x^2 + y^2 - 1} =$$

$$\lim_{x^2+y^2-1 \to 0} 1 + \frac{o(y^2) + o(x^2)}{x^2 + y^2 - 1} = 1$$

Allora la funzione non è continua nei punti dell’insieme $\{x^2 + y^2 - 1 = 0\}$.
5.

\[f_5(x, y) = \begin{cases} \arctan(xy) \quad & \text{se } y \neq 0, \\ y \quad & \text{se } y = 0, \end{cases} \]

Valuto la continuità della funzione nei punti della forma \((x, 0)\):

\[\lim_{y \to 0} \frac{\arctan(xy)}{y} = \]

Osservo che \(xy \to 0\), quindi \(\arctan(xy) \to xy\):

\[\lim_{y \to 0} \frac{xy}{y} = x \]

Il limite calcolato vale 0 solo se \(x = 0\), allora la funzione è continua nell'origine, ma in punti della forma \((x, 0)\) con \(x \neq 0\), la funzione non è continua.

6.

\[f_6(x, y) = \begin{cases} \frac{xy^3}{x^4 + y^2} \quad & \text{se } (x, y) \neq (0, 0), \\ 0 \quad & \text{se } (x, y) = (0, 0), \end{cases} \]

Verifico la continuità di \(f\) nell'origine:

\[\lim_{(x, y) \to (0, 0)} \frac{xy^3}{x^4 + y^2} = \]

\[\lim_{(x, y) \to (0, 0)} \frac{y^2}{x^4 + y^2} \cdot xy = \]

Osservo che \(y^2 \leq y^2 + x^4 \implies \frac{y^2}{y^2 + x^4} \leq 1\), quindi il limite da calcolare è minore o uguale di:

\[\lim_{(x, y) \to (0, 0)} xy = 0 \]

allora per il teorema del confronto anche il limite di partenza tende a 0. La funzione è continua su tutto \(\mathbb{R}\).

7.

\[f_7(x, y) = \begin{cases} \frac{x}{x + y} \quad & \text{se } x \neq -y, \\ \frac{1}{2} \quad & \text{se } x = -y, \end{cases} \]

Studio la continuità di \(f\) nei punti della bisettrice \(y = -x\).

\[\lim_{x+y \to 0} \frac{x}{x + y} = \]

\(f\) non è continua nei punti di \(y = -x\) diversi dall'origine, in cui il limite vale \(\infty\). Per \((x, y) \to (0, 0)\), osservo che il limite non esiste, infatti se lo calcolo lungo rette della forma \(y = kx\), otteno:

\[\lim_{(x,y)\to(0,0)} \frac{x}{x + kx} = \frac{1}{1 + k} \]

e il valore del limite varia a seconda della retta considerata. Concludo che \(f\) non è continua nemmeno nell'origine.
Capitolo 2

Differenziabilità

2.1 Richiami teorici

1. Si dice che f è derivabile parzialmente rispetto alla variabile x se esiste

$$\lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

e tale limite viene detto derivata parziale di f in (x, y).

2. Scelto un versore \mathbf{v}, se esiste

$$\lim_{t \to 0} \frac{f(x + tv_1, y + tv_2) - f(x, y)}{t}$$

allora f è derivabile lungo la direzione \mathbf{v} nel punto (x, y) e il limite si chiama derivata direzionale di f rispetto alla direzione \mathbf{v}.

3. Se f ha tutte le derivate parziali e direzionali in un punto $P = (x, y)$, non è detto che sia continua in quel punto.

4. Si dice che una funzione f è differenziabile se:

$$f(x + h, y + k) = f(x, y) + h \frac{\partial f}{\partial x}(x, y) + k \frac{\partial f}{\partial y}(x, y) + o(\sqrt{h^2 + k^2})$$

5. Per verificare se una funzione è differenziabile si verifica che:

$$\lim_{(h, k) \to (0, 0)} \frac{f(x + h, y + k) - f(x, y) - h \frac{\partial f}{\partial x}(x, y) - k \frac{\partial f}{\partial y}(x, y)}{\sqrt{h^2 + k^2}}$$
tende a 0.

6. Se f è differenziabile in (x, y) allora è continua in (x, y), ha tutte le derivate direzionali nel punto (x, y) e la derivata della funzione f rispetto alla direzione \mathbf{v} è pari a:

$$-\nabla f \cdot \mathbf{v} \quad \forall \mathbf{v} \quad t.c. \quad |\mathbf{v}| = 1$$

7. Se f è continua in (x, y), se è derivabile in (x, y) e se le derivate parziali sono continue in (x, y), allora f è differenziabile in (x, y).
8. Tutte le funzioni elementari sono differenziabili, dove sono definite.

9. Dati un vettore \(\mathbf{v} \) e un punto \(P \), se indico con \(\partial_\mathbf{v} \) la derivata direzionale rispetto a \(\mathbf{v} \), vale la formula del gradiente:

\[
\partial_\mathbf{v}(P) = \nabla f(P) \cdot \mathbf{v}.
\]

10. Regola della catena: Consideriamo \(f : A \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \), sia \(g : B \subset \mathbb{R}^m \rightarrow \mathbb{R}^p \). Sia \(x_0 \in A \) e supponiamo che \(f \) sia differenziabile in \(x_0 \). Allora la jacobiana di \(f \) in \(x_0 \) è la matrice che ha come righe i gradienti delle componenti di \(f \). Supponiamo che \(f(x_0) = y_0 \) e \(y_0 \in B \), allora è ben definita la funzione composta:

\[
h(x) = g \circ f(x)
\]

in un intorno del punto \(x_0 \), e vale la relazione:

\[
J_H(x_0) = J_g(f(x_0)) \times J_f(x_0)
\]

2.2 Calcolo di derivate parziali e regola della catena

Esercizio 2.1

Calcolare le derivate parziali delle seguenti funzioni:

1. \(f(x, y) = \frac{xy}{x^2 + y^2} \)

Questa funzione è definita su \(\mathbb{R}^2 \setminus O \), allora

\[
\forall (x, y) \neq (0, 0) \quad \frac{\partial f}{\partial x} =
\]

\[
= \frac{y(2x^2 + 2y^2) - 2xy * 2x}{(x^2 + y^2)^2}
\]

\[
= \frac{y^3 + x^2y - 2x^3y}{(x^2 + y^2)^2}
\]

Siccome i ruoli di \(x \) e \(y \) sono uguali in questa funzione, si ottiene subito:

\[
\frac{\partial f}{\partial y}(x, y) = \frac{x(2x^2 - y^2)}{(x^2 + y^2)^2}
\]

2. \(f(x, y) = e^{\sin(x/y)} \)

Il dominio di questa funzione è \(\{(x, y) \text{ t.c. } y \neq 0\} \).

\[
\frac{\partial f}{\partial x}(x, y) = e^{\sin(x/y)} \cdot \cos(x/y) \cdot \frac{1}{y}
\]

\[
\frac{\partial f}{\partial y}(x, y) = e^{\sin(x/y)} \cdot \cos(x/y) \cdot \frac{-x}{y^2}
\]
3. \(f(x, y) = x^y
\)
Se \(x \geq 0 \), allora si può considerare \(f(x, y) = x^y = a^x \). Tenendo conto che
\[
(a^x)' = a^x \log a
\]
, si ottiene:
\[
\frac{\partial f}{\partial x}(x, y) = y^x \cdot x^{y-1} \cdot y^x \cdot \log y = y^{2x} \cdot x^{y-1} \cdot \log y
\]
\[
\frac{\partial f}{\partial y}(x, y) = x^y \cdot \log x \cdot x \cdot y^{x-1} = x^{y+1} \cdot y^{x-1} \cdot \log x
\]

Esercizio 2.2

Sia \(f : \mathbb{R}^2 \to \mathbb{R} \)

\[
f(x, y) = \begin{cases} x^3 - y^3x & \text{se } (x, y) \neq (0, 0), \\ 0 & \text{se } (x, y) = (0, 0)
\end{cases}
\]

1. Si verifichi che esistono le derivate parziali seconde \(\frac{\partial^2 f}{\partial x \partial y} \) e \(\frac{\partial^2 f}{\partial y \partial x} \) in ogni punto \((x, y) \in \mathbb{R}^2 \) e che non sono continue in \((0, 0) \).
2. Si calcolino \(\frac{\partial^2 f}{\partial x \partial y} (0, 0) \) e \(\frac{\partial^2 f}{\partial y \partial x} (0, 0) \) e si verifichi che \(\frac{\partial^2 f}{\partial x \partial y} (0, 0) \neq \frac{\partial^2 f}{\partial y \partial x} (0, 0) \).

\(f \) è di classe \(C^\infty \) in tutti i punti diversi da \((0, 0) \). Verifico se esistono le derivate parziali di \(f \) in \((0, 0) \), applicando le definizioni di derivate parziali come limiti di rapporti incrementali.

\[
f_x(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} =
\]
\[
f_x(0, 0) = \lim_{h \to 0} 1/h \cdot [\frac{0}{h^2} - 0] = 0
\]
\[
f_y(0, 0) = \lim_{k \to 0} 1/k \cdot \frac{0}{k^2} = 0
\]

Se \((x, y) \neq (0, 0) \):

\[
f_x = \frac{(3x^2y - y^3)(x^2 + y^2) - 2x(x^3y - xy^3)}{(x^2 + y^2)^2}
\]
\[
f_y = \frac{(x^2 + y^2)(x^3 - 3xy^2) - (x^3y - xy^3) \cdot 2y}{(x^2 + y^2)^2}
\]

Quindi calcolo le derivate parziali seconde nell’origine:

\[
f_{xy}(0, 0) = \lim_{k \to 0} \frac{f_x(0, k) - f_x(0, 0)}{k}
\]
\[f_{xy}(0, 0) = \lim_{k \to 0} \frac{1}{k} \left[-\frac{k^5}{k^4} - 0 \right] = -1 \]

\[f_{yx} = \lim_{h \to 0} \frac{f_y(h, 0) - f_y(0, 0)}{h} = \lim_{h \to 0} 1/h \left[\frac{h^5}{h^4} - 0 \right] = 1 \]

allora \(f_{xy} \neq f_{yx} \) come richiesto.

Esercizio 2.3

Sia \(f : D \subset \mathbb{R}^2 \to \mathbb{R} \) e sia \((x_0, y_0) \in D\). Supponiamo che \(f \) sia differenziabile in \((x_0, y_0)\), e supponiamo che \(\nabla f(x_0, y_0) \neq 0 \). Determinare la direzione \(\mathbf{v} \) di \(\mathbb{R}^2 \) in modo tale che \(\partial_{\mathbf{v}} f(x_0, y_0) \) sia massima.

Uso la formula

\[\partial_{\mathbf{v}} f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{v} = |\nabla f(x_0, y_0)| \cdot 1 \cdot \cos \phi \]

con \(\phi \) angolo fra \(\nabla f(x_0, y_0) \) e \(\mathbf{v} \), e \(\mathbf{v} \) versore di norma 1. Vogliamo trovare \(\mathbf{v} \) per cui il prodotto

\[\nabla f(x_0, y_0) \cos \phi \]

è massimo, e quindi cerco \(\mathbf{v} \) tale che \(\cos \phi = 1 \), e questa condizione è verificata se e solo se \(\mathbf{v} \) è parallelo al gradiente,

cioè

\[\mathbf{v} = \frac{\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|} \]

Esercizio 2.4

Data

\[f(x, y) = e^{x^2} \cdot (3x - y^2) \]

1. determinare la direzione di massima pendenza nel punto \((0, 1)\).

2. Determinare la direzione in cui la derivata direzionale \(\partial_{\mathbf{v}} f(0, 1) = 0 \)

Direzione di massima pendenza: Se il gradiente non è nullo, posso applicare il risultato dell’esercizio precedente.

\[\frac{\partial f}{\partial x}(x, y) = e^{x^2} \cdot 2x \cdot (3x - y^2) + 3e^{x^2} \]

\[\frac{\partial f}{\partial x}(0, 1) = 3 \neq 0 \]

\[\frac{\partial f}{\partial y}(x, y) = -2y \cdot e^{x^2} \]
\[\frac{\partial f}{\partial y}(0,1) = -2 \neq 0 \]

Allora \(\nabla f(0,1) = (3,-2) \) e la direzione di massima pendenza per \(f \) in \((0,1)\) è

\[\mathbf{v} = \frac{\nabla f(0,1)}{|\nabla f(0,1)|} = \left(\frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}} \right) \]

Derivata direzionale nulla: Per un generico vettore \(\mathbf{v}(\cos \alpha, \sin \alpha) \) scrivo la derivata

\[\partial_v(0,1) = \nabla f(0,1) \cdot (\cos \alpha, \sin \alpha) = 3 \cos \alpha - 2 \sin \alpha \]

Cerco \(\alpha \) che soddisfi l’equazione:

\[3 \cos \alpha - 2 \sin \alpha = 0 \]

se \(\cos \alpha = 0 \), \(\alpha = \pi/2 + k\pi \) e in questi casi l’equazione non è soddisfatta.

Allora si può supporre \(\cos \alpha \neq 0 \), e si ottiene:

\[\tan \alpha = 3/2 \]
\[\alpha = \arctan(3/2) \]

Per \(\alpha \in [0,2\pi] \) ci sono due parametri per i quali la derivata direzionale si annulla e sono:

\[\alpha_1 = \arctan(3/2), \quad \alpha_2 = \arctan(3/2) + \pi \]

Esercizio 2.5

Scrivere lo sviluppo di Taylor centrato nell’origine per la seguente funzione:

\[f(x,y) = x \cos(x+y) \]

\[T_3(0) = f(0,0) + f_x(0,0) \cdot x + f_y(0,0) \cdot y + f_{xx}(0,0)x^2/2 + f_{xy}(0,0)xy + f_{yy}y^2/2 + [f_{xxx}(0,0) \cdot x^3/3! + f_{xxy}(0,0)x^2y + f_{xyy}(0,0)xy^2 + f_{yyy}(0,0)y^3]/3! \]

\[f((0,0)) = 0 \]
\[f_x = \cos(x+y) - x \sin(x+y), \; f_x((0,0)) = 1 \]
\[f_y = -x \sin(x+y), \; f_y((0,0)) = 0 \]
\[f_{xx} = -2 \sin(x+y) - x \cos(x+y), \; f_{xx}((0,0)) = 0 \]
\[f_{xy} = -\sin(x+y) - x \cos(x+y), \; f_{xy} = 0 \]
\[f_{yy} = -x \cos(x+y), \; f_{yy}((0,0)) = 0 \]
\[f_{xxx} = -3 \cos(x+y) + x \sin(x+y), \; f_{xxx}((0,0)) = -3 \]
\[f_{xxy} = -3 \cos(x+y) + x \sin(x+y), \; f_{xxy}((0,0)) = -3 \]
f_{yyx} = -\cos(x + y) + x \sin(x + y), f_{yx} = -1
f_{yy} = \sin(x + y), f_{yyy}(0, 0, 0) = 0

allora lo sviluppo di Taylor è:

\[
t_3(0, 0) = x + 1/6 * (-3x^3 - 6x^2y - 3y^2x) + o(x^2 + y^2^3)
\]

Esercizio 2.6

Calcolare il seguente limite:

\[
\lim_{(x,y)\to(0,0)} \frac{\sin^2 \sqrt{xy} - xy}{x^2 + y^2} = 0
\]

In questo caso sostituisco \(\sin(xy)\) con il suo sviluppo di Taylor considerando \(\sin(xy)\) come una funzione in una variabile della forma \(\sin \varepsilon_n\) con \(\varepsilon_n \to 0\).

\[
\sin(xy) = xy - (xy)^3/6 + o(xy)^3
\]

Infatti

\[
\forall \varepsilon > 0 \exists \delta_1(\varepsilon) > 0 t.c. |t| < \delta_1, \text{ allora } |\sin t - t + t^3/6| < \varepsilon * t^3
\]

inoltre \(\sqrt{xy}\) è continua, cioè

\[
dato \varepsilon > 0 \exists \delta_2(\varepsilon) t.c. |(x, y)| < \delta_2 \longrightarrow |\sqrt{xy}| < \varepsilon.
\]

Unendo le disuguaglianze, dato \(\varepsilon > 0\) esiste \(\delta_2 = \delta_2(\delta_1)\) tale che \(|x, y| < \delta_2\) implica \(|\sqrt{xy}| < \delta_1\), quindi \(|\sin \sqrt{xy} - \sqrt{xy} - \sqrt{xy}^3/6| \leq \varepsilon * \sqrt{xy}^3\).

\[
\lim_{(x,y)\to(0,0)} \frac{[\sqrt{xy} - 1/6 * (xy)^{3/2} + o(\sqrt{xy})]^3 - xy}{x^2 + y^2} = 0
\]

Sviluppo il quadrato:

\[
[\sqrt{xy} - 1/6 * (xy)^{3/2} + o(\sqrt{xy})]^3
\]
\[
= xy + 1/36 * (xy)^3 + o(xy)^3 - 1/3 * (xy)^2 - 1/3(xy)^{3/2} * o(\sqrt{xy})^3 + 2\sqrt{xy} * o(\sqrt{xy})^3
\]
\[
\lim_{(x,y)\to(0,0)} \frac{xy + 1/36 * (xy)^3 + o(xy)^3 - 1/3 * (xy)^2 - 1/3(xy)^{3/2} * o(\sqrt{xy})^3 + 2\sqrt{xy} * o(\sqrt{xy})^3 - xy}{x^2 + y^2} = 0
\]

\[
\lim_{(x,y)\to(0,0)} \frac{1/36 * (xy)^3 + o(xy)^3 - 1/3 * (xy)^2 - 1/3(xy)^{3/2} * o(\sqrt{xy})^3 + 2\sqrt{xy} * o(\sqrt{xy})^3}{x^2 + y^2} = 0
\]

\(o(\sqrt{xy})^3 * (xy)^{3/2}\) è un infinitesimo di ordine superiore rispetto a \(x^2 + y^2\), e ingloba anche \(x^3y^3\), e anche \(o(x^3y^3)\), quindi rimane:
$$\lim_{(x,y) \to (0,0)} \frac{-1/3 \cdot (xy)^2 + 2 \cdot o(x^2 y^2)}{x^2 + y^2} =$$

$$\lim_{(x,y) \to (0,0)} \frac{-1/3x^2 y^2 + o(x^2 y^2)}{x^2 + y^2} =$$

Il primo termine tende a 0 (lo verifico, ad esempio, passando alle coordinate polari) mentre il secondo addendo si può riscrivere come:

$$\frac{o(x^2 y^2)}{x^2 + y^2} \cdot \frac{x^2 y^2}{x^2 + y^2}$$

ed è il prodotto di quantità che tendono a 0, quindi tende a 0.

Esercizio 2.7

Sia $g(x,y) = xy \cos y$, e sia $f(s,t) = (s - t, s + t)$. Sia

$$H(s,t) = g \circ f(s,t)$$

Calcolare il gradiente di h sia usando la regola della catena, sia direttamente.

$$H = g \circ f(s,t) = f_1(s,t) \cdot f_2(s,t) \cdot \cos f_2(s,t) = (s - t) \cdot (s + t) \cdot \cos(s + t)$$

Possiamo calcolare direttamente le derivate parziali

$$\frac{\partial h}{\partial s} = (s + t) \cdot \cos(s + t) + (s - t) \cdot \cos(s + t) - (s - t) \cdot (s + t) \cdot \sin(s + t)$$

$$\frac{\partial h}{\partial t} = -(s + t) \cdot \cos(s + t) + (s - t) \cdot \cos(s + t) - (s - t) \cdot (s + t) \cdot \sin(s + t)$$

Si ottiene lo stesso risultato usando la regola della catena, infatti:

$$J_g = (x \cos y, y \cos y - xy \sin y)$$

$$J_f(s,t) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$J_h(s,t) = \nabla G(s,t) \times J_f$$

$$J_h(s,t) = \begin{pmatrix} (s + t) \cdot \cos(s + t) \\ (s - t) \cdot \cos(s + t) - (s + t) \cdot \sin(s + t) \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= (s + t) \cdot \cos(s + t) + (s + t) \cdot \cos(s + t) - (s + t) \cdot \sin(s + t)$$

$$- (s + t) \cdot \cos(s + t) + (s - t) \cdot \cos(s + t) - (s + t) \cdot \cos(s + t) - (s + t) \cdot \sin(s + t)$$

Esercizio 2.8
Sia \(f : \mathbb{R}^3 \to \mathbb{R} \), definita come:
\[
f(x, y, z) = \int_x^{yz} e^{-s^2} \, ds
\]

Sia \(r \) una funzione : \(\mathbb{R} \to \mathbb{R}^3 \) continua e derivabile. Calcolare \(h(t) = f \circ r(t) \) nel punto \(t = 0 \), sapendo che
\[
r(0) = (1, 2, 0)
\]
mentre \(r'(0) \) ha modulo \(\sqrt{3} \) ed è parallelo alla retta di equazioni \(x = y = z \), con verso orientato sugli \(x \) crescenti.

Applico la regola della catena:
\[
H'(t) = \nabla f(r(0)) \times J_r(0)
\]
con \(J_r(t) = r'(t) \) vettore colonna di componenti
\[
\begin{align*}
r'_1(t) \\
r'_2(t) \\
r'_3(t)
\end{align*}
\]
che si può riscrivere come:
\[
\frac{df}{dx}(r_0(t)) \ast r'_1(t) + \frac{df}{dy}(r_0(t)) \ast r'_2(t) + \frac{df}{dz}(r_0(t)) \ast r'_3(t)
\]
\[
r'(t) = (\alpha, \alpha, \alpha)
\]
\[
|r'_0| = \sqrt{\alpha^2 + \alpha^2 + \alpha^2} = \sqrt{3}\alpha
\]
\[
3\alpha^2 = 3
\]
\[
\alpha = \pm 1
\]
ma siccome \(r'(t) \) ha il verso dell’asse positivo delle \(x \), allora \(\alpha = 1 \).

Per il teorema del calcolo integrale, se
\[
F(x) = \int_a^x \phi(t) \, dt
\]
allora se \(\phi \) è continua in \(x_0 \), \(F \) è derivabile in \(X_0 \) e segue che \(\phi(x_0) \) è la derivata di \(F \) in \(x_0 \).

Allora, ponendo
\[
f(x, y, z) = \int_x^{yz} e^{-s^2} \, ds = -\int_{yz}^x e^{-s^2} \, ds
\]
calcoliamo
\[
\frac{df}{dx} = -e^{-x^2}
\]
\[
\frac{df}{dy} = \phi(t) \ast t' = e^{-y^2z^2} \ast z \text{ derivazione della funzione composta}
\]
\[
\frac{df}{dz} = e^{-y^2z^2} \ast y
\]
Allora
\[
r_0 = (1, 2, 0) \rightarrow J_f(r_0) = -e^{-1} 0 2
\]
e moltiplicato per il vettore colonna \(R'(0) = (1, 1, 1) \) ottengo:
\[
H'(0) = -e^{-1} + 2
\]

2.3 Differenziabilità di funzioni generiche

Esercizio 2.9

Sia \(f(x, y) = |y| \sin(x^2 + y^2) \) Stabilire per quali punti di \(\mathbb{R}^2 \) la funzione è continua, derivabile, differenziabile.

Continuità La funzione è continua su tutto \(\mathbb{R}^2 \) perché somma, prodotto e composizione di funzioni continue.

Derivabilità

\[
f(x, y) = \begin{cases}
y \ast \sin(x^2 + y^2) & \text{per } y \geq 0 \\
-y \ast \sin(x^2 + y^2) & \text{per } y < 0
\end{cases}
\]

Se \(y \neq 0 \), \(f \) è differenziabile nel punto \((x, y)\).

Potrebbero esserci problemi nei punti \((x, y)\) con \(y = 0 \). Applichiamo la definizione di derivata parziale. Prendo il punto del tipo \((x_0, y)\) e mi chiedo per quali punti di questa forma esiste il limite del rapporto incrementale.

\[
\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x_0 + h, 0) - f(x_0, 0)}{h} = \\
= \lim_{h \to 0} \frac{0 - 0}{h} = 0
\]

il rapporto incrementale vale sempre 0, e quindi

\[
\frac{\partial f}{\partial x}(x, y) = 0 \forall x \in \mathbb{R}, y = 0
\]
\[
\frac{\partial f}{\partial y}(x, y) = \lim_{k \to 0} \frac{f(x_0, k) - f(x_0, 0)}{k}
\]
\[= \lim_{k \to 0} \frac{|k| \cdot \sin(x_0^2 + k^2)}{k} = \lim_{k \to 0} \sgn k \cdot \sin(x_0^2 + k^2) = \pm \sin(x_0)^2 \]
e questo significa che i limiti destro e sinistro della funzione non coincidono, a meno che \(\sin(x_0) = 0 \).

Allora \(\frac{\partial f}{\partial y} \) è definita e vale 0 in tutti i punti della forma \((x_0, 0)\) tali che \(\sin(x_0)^2 = 0 \), cioè \(x_0 = \pm \sqrt{n} \). Se invece \(x_0 \neq \sqrt{n} \) la derivata parziale rispetto a \(y \) non è definita.

Calcolo le derivate parziali nel generico punto \((x, y)\):

\[\frac{\partial f}{\partial x}(x, y) = 2x|y| \cdot \cos(x^2 + y^2) \]
\[\frac{\partial f}{\partial y}(x, y) = \sgn y \cdot \sin(x^2 + y^2) + |y| \cdot \cos(x^2 + y^2) \cdot 2y \]

Differenziabilità Se \(y \neq 0 \), la funzione è differenziabile, perché è somma e prodotto di funzioni differenziabili. Verifichiamo se è differenziabile nei punti della forma \((x_0, 0)\) con \(x_0 = \pm \sqrt{n} \). Nei punti in cui \(x_0 \neq \pm \sqrt{n} \) \(f \) non è differenziabile perché non esistono nemmeno le sue derivate.

\[
\begin{align*}
\lim_{(h,k) \to (0,0)} f(x_0 + h, k) - f(x_0, 0) - 0 \cdot h - 0 \cdot k &= \frac{|k| \cdot \sin((\pm \sqrt{n} + h)^2 + k^2)}{\sqrt{h^2 + k^2}} = \\
\lim_{(h,k) \to (0,0)} |k| \cdot \sin[\pi n + h^2 + k^2 + 2\sqrt{n} + h] &= \\
\lim_{(h,k) \to (0,0)} |k| \cdot \sin(\pi n) \cdot \cos(h^2 + k^2 + 2\sqrt{n} + h) &= \\
\lim_{(h,k) \to (0,0)} |k| \cdot \sin(\pi n) \cdot \cos(h^2 + k^2 + 2\sqrt{n} + h) &= \\
\lim_{(h,k) \to (0,0)} \frac{\pm |k| \cdot \sin(h^2 + k^2 + 2\sqrt{n} + h)}{\sqrt{h^2 + k^2}} &= \\
\lim_{(h,k) \to (0,0)} \pm |k| \cdot (h^2 + k^2 + 2\sqrt{n}) &= \\
\frac{|k|}{\sqrt{h^2 + k^2}} &= \text{una quantità limitata, mentre } h^2 + k^2 + 2\sqrt{n} \text{ tende a 0, quindi il limite tende a 0 e la funzione è differenziabile nei punti della forma } (x_0, 0) \text{ con } x_0 = \pm \sqrt{n}. \\
\end{align*}
\]

Esercizio 2.10

Sia \(f : \mathbb{R}^2 \to \mathbb{R} \) definita come

\[f(x, y) = \begin{cases}
\frac{x^{1/3}y^{5/3}}{\sqrt{x^2 + y^2}}, & \text{se } (x, y) \neq (0, 0), \\
0, & \text{se } (x, y) = (0, 0).
\end{cases} \]
Si discutano la continuità, la derivabilità parziale e la differenziabilità di f.

Verifico la continuità della funzione, cioè verifico che:

$$\lim_{(x,y) \to (0,0)} f(x, y) = f(0, 0) = 0$$

$$\lim_{(x,y) \to (0,0)} \frac{x^{1/3}y^{5/3}}{\sqrt{x^2 + y^2}} =$$

$$\lim_{\rho \to 0} \frac{\rho^2 \cos^{1/3} \theta \sin^{5/3} \theta}{\rho} =$$

$$\lim_{\rho \to 0} \rho \cos^{1/3} \theta \sin^{5/3} \theta = 0 \forall \theta$$

allora f è continua nell’origine.

Verifico l’esistenza delle derivate parziali nell’origine:

$$\frac{\partial f}{\partial x} ((0, 0)) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = 0$$

$$\frac{\partial f}{\partial y} ((0, 0)) = \lim_{k \to 0} \frac{f(0, k) - f(0, 0)}{k} = 0$$

Verifico la differenziabilità di f nell’origine, e studio il limite:

$$\lim_{(h,k) \to (0,0)} \frac{f(h, k) - f(0, 0) - \frac{\partial f}{\partial x} * h - \frac{\partial f}{\partial y} * k}{\sqrt{h^2 + k^2}} =$$

$$\lim_{(h,k) \to (0,0)} \frac{h^{1/3}k^{5/3}}{\sqrt{h^2 + k^2} * \sqrt{h^2 + k^2}} =$$

$$\lim_{(h,k) \to (0,0)} \frac{h^{1/3}k^{5/3}}{h^2 + k^2} =$$

Osservo che f non è differenziabile nell’origine, infatti, ad esempio, lungo la curva $h = k$ si ha:

$$\lim_{k=h, h \to 0} \frac{h^{1/3}k^{5/3}}{h^2 + k^2} = 1/2 \neq 0.$$

Calcolo le derivate parziali in un generico punto (x, y):

$$\frac{\partial f}{\partial x} = y^{5/3} \sqrt{x^2 + y^2} * 1/3 * x^{-2/3} - x^{1/3} * 2x/(2\sqrt{x^2 + y^2})$$

$$= y^{5/3} (x^2 + y^2) * 1/3 - x^2$$

$$= y^{5/3} (x^2 + y^2) * 1/3 - x^2$$

$$= y^{5/3} - 2/3x^2 + 1/3y^2$$

$$\frac{\partial f}{\partial y} =$$
Esercizio 2.11

Considero la funzione

\[f(x, y) = \begin{cases}
 x^3 y^2 & \iff (x, y) \neq (0, 0) \\
 0 & \mathcal{F}(x, y) = (0, 0)
\end{cases} \]

1. Si dimostri che \(f \) è continua in \((0, 0)\)

2. Si stabilisca se è differenziabile in \((0, 0)\)

Continuità: verifico che

\[\lim_{(x,y) \to (0,0)} f(x,y) = f(0,0) = 0 \]

\[\lim_{(x,y) \to (0,0)} \frac{x^3 y^2}{x^4 + y^6} = \]

Passare immediatamente alle coordinate polari non porta a nessun risultato, infatti si avrebbe:

\[L = \lim_{\rho \to 0^+} \frac{\rho^5 \cos^3 \theta \sin^2 \theta}{\rho^4 \cos^4 \theta + \rho^6 \sin^6 \theta} \]

\[L > \lim_{\rho \to 0^+} \frac{\rho^3 \sin^2 \theta}{\cos^4 \theta + \sin^6 \theta} \]

\[L < \lim_{\rho \to 0^+} 1/\rho \cdot \cos^3 \theta \sin^2 \theta \]

Al denominatore ho termini di grado diverso, non si riesce a dimostrare che uniformemente in \(\theta \) questa quantità tende a 0.

In generale, quando al denominatore ho quantità di gradi diversi, si utilizza il seguente metodo per fare in modo che i termini abbiano lo stesso grado: nel limite di partenza pongo \(x = s^\alpha \) e \(y = t^\beta \) e scelgo \(\alpha \) e \(\beta \) in modo che \(4\alpha = 6\beta \). In questo caso posso scegliere \(\alpha = 3 \) e \(\beta = 2 \). Devo scrivere \(s^\alpha \) e \(t^\beta \) in modo che cambino segno in un intorno di 0, quindi pongo \(s^\alpha = s^3 \) e \(t^\beta = |t| \cdot t \).
\[
\lim_{(x,y)\to(0,0)} \frac{x^3 y^2}{x^4 + y^6} = \\
\lim_{(x,y)\to(0,0)} \frac{s^9 t^4}{s^{12} + t^{12}} =
\]

Ora che al denominatore ho termini dello stesso grado posso passare alle coordinate polari:

\[
\lim_{\rho \to 0} \frac{\rho^{13} \cos^9 \theta \sin^4 \theta}{\rho^{12} \left[\cos^{12} \theta + \sin^{12} \theta \right]} = \\
\lim_{\rho \to 0} \frac{\rho \cos^9 \theta \sin^4 \theta}{\cos^{12} \theta + \sin^{12} \theta} = \\
\cos^9 \theta \sin^4 \theta \leq 1
\]

Osservo che

\[
\cos^{12} \theta + \sin^{12} \theta \geq C \geq 0
\]

perché è una somma di funzioni continue e positive, che non si annullano mai simultaneamente, e il minimo C > 0 esiste per il teorema di Weierstrass. Il limite da calcolare è minore di \(\lim_{\rho \to 0} \rho \cdot 1/c = 0 \) uniformemente in \(\theta \), e la continuità è verificata.

Esistenza delle derivate parziali nell’origine:

\[
\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0
\]

perché per come \(f \) è definita, \(f(h,0) = 0 \) e \(f(0,0) = 0 \).

\[
\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0
\]

Allora \(f \) ha derivate parziali nulle nel punto \((0,0) \).

Differenziabilità: calcolo il limite

\[
\lim_{(h,k)\to(0,0)} \frac{f(k,h) - f(0,0) - h \cdot 0 - k \cdot 0}{\sqrt{h^2 + k^2}} = \\
\lim_{(h,k)\to(0,0)} \frac{h^3 k^2}{(h^4 + k^6) \cdot \sqrt{h^2 + k^2}} =
\]

Questo limite non esiste, perché se considero la curva \(k = h \), ottengo:

\[
\lim_{(h,k)\to(0,0)} \frac{h^5}{(h^4 + h^6) \cdot \sqrt{2} \cdot |h|} =
\]

\[
\lim_{(h,k)\to(0,0)} \frac{\pm h^4}{(h^4 + h^6) \sqrt{2}} = \\
\frac{h^4 + h^6}{h^4} \sim h^4 \iff h \to 0 \\
\lim_{(h,k)\to(0,0)} \frac{\pm h^4}{h^4 \sqrt{2}} = \pm \frac{1}{\sqrt{2}}
\]

Quindi la funzione è continua ma non differenziabile in \((0,0)\).

Esercizio 2.12

Sia data la funzione

\[
f(x, y) = \sqrt[3]{x^2} \cdot (y - 1) + 1
\]

Verificare che non è differenziabile in \((0,1)\) e calcolare le derivate direzionali di \(f\) in \((0,1)\).

Differenziabilità: Voglio verificare che:

\[
\lim_{(h,k)\to(0,0)} \frac{f(h,1+k) - f(h,k) - h \cdot \frac{\partial f}{\partial x}(0,1) - k \cdot \frac{\partial f}{\partial y}(0,1)}{\sqrt{h^2+k^2}} \neq 0
\]

Verifico prima se esistono

\[
\frac{\partial f}{\partial x}(0,1) = \lim_{h\to0} \frac{f(h,1)-f(0,1)}{h} = \frac{\sqrt[3]{h^2 \cdot (1-1)} + 1 - 1}{h} = 0
\]

\[
\frac{\partial f}{\partial y}(0,1) = \lim_{k\to0} \frac{f(0,k)-f(0,1)}{k} = \frac{1 - 1}{k} = 0
\]

Allora le derivate parziali in \((0,1)\) esistono e sono nulle.

Verifico la differenziabilità di \(f\) .

\[
\lim_{(h,k)\to(0,0)} \frac{f(h,k+1) - f(0,1) - 0 - 0}{\sqrt{h^2+k^2}} = \\
\lim_{(h,k)\to(0,0)} \frac{\sqrt[3]{h^2 \cdot k + 1} - 1 - 0 - 0}{\sqrt{h^2+k^2}} = \\
\lim_{(h,k)\to(0,0)} \frac{\sqrt[3]{h^2 \cdot k}}{\sqrt{h^2+k^2}} =
\]

Osservo che, lungo la curva \(k = h\), il limite non vale 0, infatti

\[
\lim_{h\to0} \frac{\sqrt[3]{h^3}}{\sqrt{2 \cdot |h|}} = \pm \frac{1}{\sqrt{2}}
\]

allora \(f\) non è differenziabile.
Derivate direzionali: verifico se esiste la derivata direzionale lungo un generico vettore \(\mathbf{v} = (\cos \alpha, \sin \alpha) \) e quindi calcolo il limite del rapporto incrementale:

\[
\lim_{t \to 0} \frac{f(t \cos \alpha, 1 + t \sin \alpha) - f(0, 1)}{t} = \sqrt{T^2 \cos^2 \alpha + t \sin \alpha + 1} - 1
\]

\[
\lim_{t \to 0} \frac{t \cdot \sqrt{T^2 \cos^2 \alpha + t \sin \alpha}}{t} = \sqrt{\sin \alpha \cos^2 \alpha}
\]

e il valore ottenuto, dipendente da \(\alpha \) e dalla direzione scelta è la derivata direzionale di \(f \) nel versore \((\cos \alpha, \sin \alpha) \).

Esercizio 2.13

Sia

\[
f(x, y) = \begin{cases} \sqrt[3]{y} \cdot e^{-\frac{x^2}{x^2}} & \text{per } x \neq 0 \\ 0 & \text{per } x = 0 \end{cases}
\]

Verificare che:

1. \(f \) è continua in \((0, 0)\)
2. \(f \) è derivabile in ogni direzione nel punto \((0, 0)\)
3. vale la formula del gradiente.
4. \(f \) non è differenziabile in \((0, 0)\)

La differenziabilità di \(f \) è condizione sufficiente per i punti 1, 2 e 3, ma non necessaria.

Continuità: verifico che

\[
\lim_{(x,y) \to 0} f(x, y) = f(0, 0) = 0
\]

\[
\lim_{(x,y) \to (0,0)} \sqrt[3]{y} \cdot e^{-\frac{x^2}{x^2}} =
\]

\[
| \sqrt[3]{y} \cdot e^{-\frac{x^2}{x^2}} | \leq \sqrt[3]{y} \rightarrow 0
\]

e il limite vale 0 per il teorema del confronto.

Derivate direzionali: considero un versore \(\mathbf{v} = (\cos \alpha, \sin \alpha) \) in \(\mathbb{R}^2 \), con \(\alpha \in (0, 2\pi) \).

\[
\lim_{t \to 0} \frac{f(t \cos \alpha, t \sin \alpha) - f(0, 0)}{t}
\]
\[
\lim_{t \to 0} \frac{\sqrt[3]{t} \sin \alpha \ast e^{-\frac{2 \sin^2 \alpha}{t \cos^2 \alpha}}}{t} = \lim_{t \to 0} \frac{\sqrt[3]{t} \sin \alpha \ast e^{-\frac{\sin^2 \alpha}{t^2 \cos^2 \alpha}}}{t} = \lim_{t \to 0} t^{-2/3} \sqrt[3]{\sin \alpha} \ast e^{-\frac{\sin^2 \alpha}{t^2 \cos^2 \alpha}} =
\]

Il limite vale 0 per \(\alpha \neq \pi/2 \) e \(\alpha \neq 3\pi/2 \), perché l’infinito di ordine esponenziale al denominatore prevale sul denominatore di ordine lineare.

Per \(\alpha = \pi/2 \) \((t \cos \alpha, t \sin \alpha)\) sta sull’asse y e la derivata è nulla.

Formula del gradiente: In particolare vale la formula del gradiente, perché per ogni \(\alpha \)

\[
\frac{\partial f}{\partial x}(\cos \alpha, \sin \alpha) = 0, \quad \frac{\partial f}{\partial y}(\cos \alpha, \sin \alpha) = 0
\]

allora

\[
\nabla f(0, 0) \cdot (\cos \alpha, \sin \alpha) = (0, 0) \cdot (\cos \alpha, \sin \alpha) = 0
\]

quindi la derivata direzionale della funzione in direzione \((\cos \alpha, \sin \alpha)\) coincide con il gradiente moltiplicato scalarmente per \((\cos \alpha, \sin \alpha)\).

Non differenziabilità: Dimostriamo che

\[
\lim_{(h,k) \to (0,0)} \frac{f(h,k) - f(0,0) - 0 \ast h - 0 \ast k}{\sqrt{h^2 - k^2}} \neq 0
\]

\[
\lim_{(h,k) \to (0,0)} \frac{3\sqrt{k}}{\varepsilon \sqrt{k^2 + \sqrt{h^2 + k^2}}} =
\]

Sulla curva \(k = h^2 \) si ha

\[
\lim_{(h,k) \to (0,0)} \frac{\varepsilon}{e \ast \sqrt{h^2 + k^2}} = \lim_{(h,k) \to (0,0)} \frac{h^{2/3}}{e} = +\infty
\]

e quindi la funzione non è differenziabile.

Questo esercizio mostra un esempio di funzione continua e con tutte le derivate parziali, ma non è differenziabile.

Esercizio 2.14

Si discutano la continuità e la differenziabilità
nel punto \((0, 0)\) della funzione \(f : \mathbb{R}^2 \rightarrow \mathbb{R}\) definita come

\[
f(x, y) = \begin{cases}
\frac{e^{xy} - 1}{\sqrt{x^2 + y^2}}, & \text{se } (x, y) \neq (0, 0), \\
0, & \text{se } (x, y) = (0, 0).
\end{cases}
\]

Inoltre, per ogni versore \(\nu\) di \(\mathbb{R}^2\), si calcolino (se esistono) le derivate secondo la direzione \(\nu\) di \(f\) nel punto \((0, 0)\).

Continuità:

\[
\lim_{(x,y)\to(0,0)} \frac{e^{xy} - 1}{\sqrt{x^2 + y^2}} = e^{xy} - 1 \sim xy \quad \text{per } xy \to 0
\]

\[
\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} =
\]

e la funzione è continua infatti in coordinate polari si ottiene:

\[
\lim_{\rho\to0} \frac{\rho^2 \cos \theta \sin \theta}{\rho} = \\
\lim_{\rho\to0} \rho \cos \theta \sin \theta = 0 \forall \theta
\]

Differenziabilità:

\[
\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \\
= \lim_{h \to 0} \frac{e^{h\cdot0} - 1}{\sqrt{h^2}} \cdot 1/h = 0/h^2 = 0
\]

\[
\frac{\partial f}{\partial y}(0, 0) = \lim_{k \to 0} \frac{0 - 0}{k} = 0
\]

Allora per verificare la differenziabilità di \(f\) nell’origine calcolo:

\[
\lim_{(h,k)\to(0,0)} \frac{f(h, k) - f(0, 0) - 0 - 0}{\sqrt{h^2 + k^2}} = \\
\lim_{(h,k)\to(0,0)} \frac{e^{hk} - 1}{|h^2 + k^2|} = \\
\lim_{(h,k)\to(0,0)} \frac{hk}{|h^2 + k^2|}
\]

e la funzione non è differenziabile infatti lungo la curva \(h = k\) il limite vale 1/2 e non 0.

Derivate direzionali: Per un versore \(\nu = (\nu_1, \nu_2)\)

\[
\lim_{t \to 0} \frac{f(t\nu_1, t\nu_2) - f(0, 0)}{t} =
\]
\[\lim_{t \to 0} \frac{e^{t^2 \nu_1 \nu_2} - 1}{t^2 \nu_1 \nu_2} = \frac{\nu_1 \nu_2}{\sqrt{\nu_1^2 + \nu_2^2}} \]

allora

\[d_{\nu} f(0, 0) = \frac{\nu_1 \nu_2}{\sqrt{\nu_1^2 + \nu_2^2}} \]

Esercizio 2.15

Si discutano la continuità, la derivabilità direzionale e la differenziabilità delle seguenti funzioni.

1. \(f_1 : \mathbb{R}^2 \to \mathbb{R}, \quad f_2(x, y) = \begin{cases} x^2 e^{-1/y} \text{ se } x > 0 \text{ e } y > 0, \\ 0 \text{ altrimenti} \end{cases} \)

Continuità: Studio la continuità sui semiassi positivi di ascisse e ordinate.

\[\lim_{x \to 0} x^2 e^{-1/y} = 0 \]

\[\lim_{y \to 0} \frac{x^2}{e^{-1/y}} = 0 \quad \text{con} \quad \lim_{y \to 0} e^{-1/y} \to +\infty \quad \text{e} \quad y \to 0 \]

\[\lim_{(x, y) \to (0, 0)} x^2 e^{-1/y} = [0/\infty] = 0 \]

allora la funzione è continua su tutto \(\mathbb{R} \).

Derivabilità direzionale:

\[\lim_{h \to 0} \frac{h^2 \cos^2 \alpha e^{-\frac{1}{\pi \sin \alpha}}}{h} = \]

\[\lim_{h \to 0} h \cos^2 \alpha e^{-\frac{1}{\pi \sin \alpha}} = 0 \quad \lim_{h \to 0} \frac{h}{\infty} = 0 \]

allora le derivate direzionali nell’origine esistono e valgono 0.

Differenziabilità:

\[\lim_{(h, k) \to (0, 0)} \frac{h^2 e^{-1/k}}{\sqrt{h^2 + k^2}} = \]

Passo alle coordinate polari:

\[\lim_{\rho \to 0} \frac{\rho^2 \cos^2 \theta e^{-\frac{1}{\rho \sin \theta}}}{\rho} = \]

\[\lim_{\rho \to 0} \rho \cos^2 \theta e^{-\frac{1}{\rho \sin \theta}} = [0/\infty] = 0 \]

e la funzione è differenziabile perché in coordinate polari il limite tende a 0 uniformemente in \(\theta \).
2. \[f_2 : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f_2(x, y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{se } (x, y) \neq (0, 0), \\ 0, & \text{se } (x, y) = (0, 0), \end{cases} \]

Continuità:
\[
\lim_{(x,y) \to (0,0)} \frac{x^3}{x^2 + y^2} =
\]
Passando a coordinate polari:
\[
\lim_{\rho \to 0} \frac{\rho^3 \cos^3 \theta}{\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta} =
\lim_{\rho \to 0} \frac{\rho^3 \cos^3 \theta}{\rho^2} =
\lim_{\rho \to 0} \rho \cos^3 \theta = 0 \forall \theta
\]
allora la funzione è continua nell’origine.

Derivabilità direzionale:
\[
\lim_{h \to 0} \frac{h^3 \cos^3 \alpha}{h^2 \cos^2 \alpha + h^2 \sin^2 \alpha} =
\lim_{h \to 0} \frac{h^3 \cos^3 \alpha}{h^3} = \cos^3 \alpha
\]
allora la derivata direzionale nell’origine esiste e vale \(\cos^3 \alpha \).

Differenziabilità: Verifico se esistono le derivate parziali.
\[
f_x = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} =
\lim_{h \to 0} \frac{h^3 - 0}{h} = 1
\]
\[
f_y = \lim_{k \to 0} \frac{f(0, k) - f(0, 0)}{k} = 0 / k = 0
\]
Allora le derivate parziali esistono.
\[
\lim_{(h,k) \to (0,0)} \frac{h^3}{h^2 + k^2} - \frac{h}{\sqrt{h^2 + k^2}} =
\lim_{(h,k) \to (0,0)} \frac{h^3 - h^3 - h k^2}{(h^2 + k^2) \sqrt{h^2 + k^2}} =
\lim_{(h,k) \to (0,0)} \frac{-h k^2}{(h^2 + k^2) \sqrt{h^2 + k^2}} =
\]
Osservo che, lungo la curva \(k = h \), si ha:
\[
\lim_{h \to 0} \frac{-h^3}{2h^2 \sqrt{2h^2}} =
\lim_{h \to 0} \frac{-h^3}{2 \sqrt{2h^3}} = -\frac{1}{2 \sqrt{2}} \neq 0
\]
alora il limite non tende a 0 e la funzione non è differenziabile nell’origine.
3.

\[f_3 : \mathbb{R}^2 \to \mathbb{R}, \quad f_3(x, y) = \begin{cases} \frac{(1+x^2)x^2y^4}{x^4+2x^2y^4+y^8}, & \text{se } (x, y) \neq (0, 0), \\ 0, & \text{se } (x, y) = (0, 0), \end{cases} \]

Continuità: Verifico se

\[
\lim_{(x,y) \to (0,0)} f(x, y) = 0
\]

\[
\lim_{(x,y) \to (0,0)} \frac{(1+x^2)x^2y^4}{x^4+2x^2y^4+y^8} = 0
\]

Considero la curva \(x = y^2 \).

\[
\lim_{y \to 0} \frac{(1+y^4)y^8}{y^8+2y^8+y^8} = \frac{(1+y^4)y^8}{4y^8} = \frac{y^8}{4y^8} + \frac{y^{12}}{4y^8} = \lim_{y \to 0} 1 + \frac{y^4}{4} = 1
\]

e quindi il limite non tende a 0, e la funzione non è continua nell’origine. Segue che la funzione non è nemmeno differenziabile nell’origine, perché la continuità è una condizione necessaria per la differenziabilità. *Derivate direzionali*: fissato il generico vettore \((\cos \alpha, \sin \alpha)\):

\[
\lim_{(h,k) \to (0,0)} \frac{f(h \cos \alpha, h \sin \alpha) - f(0, 0)}{h} = \frac{1}{h} \lim_{h \to 0} \frac{(1+h^2 \cos^2 \alpha)h^6 \cos^2 \alpha \sin^4 \alpha}{(h^2 \cos^2 \alpha + h^4 \sin^4 \alpha)^2}
\]

\[
\lim_{h \to 0} \frac{1}{h} \cdot \frac{(1+h^2 \cos^2 \alpha)h^6 \cos^2 \alpha \sin^4 \alpha}{h^4(\cos^2 \alpha + h^2 \sin^4 \alpha)^2} = \lim_{h \to 0} \frac{(1+h^2 \cos^2 \alpha)h \cos^2 \alpha \sin^4 \alpha}{(\cos^2 \alpha + h^2 \sin^4 \alpha)^2}
\]

Quindi

\[
L = \lim_{h \to 0} \frac{(1+h^2 \cos^2 \alpha)h \cos^2 \alpha \sin^4 \alpha}{(\cos^2 \alpha + h^2 \sin^4 \alpha)^2}
\]

\[
L \leq \lim_{h \to 0} \frac{(1+h^2 \cos^2 \alpha)h}{(\cos^2 \alpha + h^2 \sin^4 \alpha)^2}
\]

\[
h \to 0 \quad \rightarrow \quad 1 + h^2 \cos^2 \alpha \to 1
\]

\[
\cos^2 \alpha + h^2 \sin^4 \alpha \to \cos^2 \alpha
\]

Quindi rimane

\[
L \leq \lim_{h \to 0} \frac{h}{\cos^2 \alpha} = 0
\]

e il limite di partenza vale 0, quindi le derivate direzionali nell’origine valgono 0.
2.4 Differenziabilità di funzioni dipendenti da un parametro

Esercizio 2.16

Sia

\[f(x, y) = \begin{cases} [x^4 - 2x^2y^2 + y^4]^{\alpha} \cdot \log(x^2 + y^2) & \text{per } (x, y) \neq (0, 0) \\ 0 & \text{per } (x, y) = (0, 0) \end{cases} \]

Discutere la differenziabilità di \(f \) nel punto \((0, 0)\) al variare di \(\alpha \in \mathbb{R} \).

Riscrivo la funzione come:

\[f(x, y) = (x^2 - y^2)^{2\alpha} \cdot \log(x^2 + y^2) \]

Verifico l’esistenza delle derivate parziali, condizione necessaria per la differenziabilità.

\[\frac{\partial f_\alpha}{\partial x} = \lim_{h \to 0} \frac{f_\alpha(h, 0) - f_\alpha(0, 0)}{h} = \lim_{h \to 0} \frac{h^{4\alpha} \cdot \log(h^2)}{h} = \lim_{h \to 0} h^{4\alpha - 1} \cdot \log(h^2) = \]

con \(\log h^2 \to -\infty \forall \alpha \).

Se \(\alpha > 1/4 \), la potenza prevale sul logaritmo e il limite vale 0. Se \(\alpha = 1/4 \), il limite tende a \(-\infty\), e lo stesso vale se \(\alpha < 1/4 \). Allora \(\frac{\partial f_\alpha}{\partial x}(0, 0) \) esiste e vale 0 se e solo se \(\alpha > 1/4 \), quindi si può già affermare che se \(\alpha < 1/4 \), \(f \) non è differenziabile nell’origine.

Inoltre

\[\frac{\partial f_\alpha}{\partial y} = \lim_{k \to 0} \frac{f_\alpha(0, k) - f_\alpha(0, 0)}{k} = \lim_{k \to 0} \frac{k^{4\alpha} \cdot \log(k^2)}{k} = \]

e come prima il limite vale 0 se \(\alpha > 1/4 \) e \(-\infty\) se \(\alpha < 1/4 \).

Concludo che se \(\alpha > 1/4 \), esistono entrambe le derivate parziali di \(f_\alpha \) nel punto \((0, 0)\).

La funzione \(f_\alpha \) è differenziabile in \((0, 0)\) se e solo se

\[\lim_{(h,k) \to (0,0)} \frac{(h^2 - k^2)^{2\alpha} \cdot \log(h^2 + k^2)}{\sqrt{h^2 + k^2}} = 0 \]

Passiamo alle coordinate polari.
\[\lim_{\rho \to 0^+} \frac{\rho^2 \cdot (\cos^2 \theta - \sin^2 \theta)^{2\alpha} \cdot \log \rho^2}{\rho} = \]
\[\lim_{\rho \to 0^+} \rho^{4\alpha - 1} \cdot (\cos^2 \theta - \sin^2 \theta)^{2\alpha} \cdot \log \rho^2 = \]
\[\lim_{\rho \to 0^+} \rho^{4\alpha - 1} \cdot (\cos^2 \theta - \sin^2 \theta)^{2\alpha} \cdot \log \rho^2 = \]
\[(\cos^2 \theta - \sin^2 \theta)^{2\alpha} \leq 2^{2\alpha} \]
\[\sup_{\theta \in [0,2\pi]} |\cos^2 \theta - \sin^2 \theta|^{2\alpha} \cdot \rho^{4\alpha - 1} \cdot \log \rho^2 \leq \rho^{4\alpha - 1} \log(\rho^2)^2 \to 0 \quad \text{per} \quad \alpha > 1/4 \]

allora la funzione è differenziabile per \(\alpha > 1/4 \).

Altro procedimento possibile: In alcuni casi è conveniente usare il teorema del differenziale totale, cioè si può dimostrare che le derivate parziali esistono nel punto e sono continue in un intorno del punto, e da questo segue la differenziabilità della funzione. Questa però non è una condizione necessaria per la differenziabilità.

Esercizio 2.17

Discutere per \(\alpha > 0 \), continuità, derivabilità e differenziabilità della funzione

\[f_\alpha(x, y) = \begin{cases}
 x/y & \text{se} \ y > |x|^\alpha \\
 0 & \text{altrove}
\end{cases} \]

Continuità: La continuità di \(f \) dipende dal valore di \(\alpha \). Per la continuità si richiede che

\[\lim_{y \to |x|^\alpha, (x,y) \to (0,0)} \frac{x}{y} = 0 \]

Osservo subito che lungo le curve \(y = kx \) con \(k > 0 \) questa condizione non è verificata perché il limite vale \(1/k \neq 0 \). Verifico per quali \(\alpha \) curve di questo tipo rientrano nell’insieme \(\{y > |x|^\alpha\} \) in cui la funzione è diversa da 0.

\(y = kx \in \{y > |x|^\alpha\} \) se e solo se

\[kx > |x|^\alpha \]
\[k > x^{\alpha - 1} \]

e per \(x \to 0 \), la condizione è soddisfatta per \(\alpha - 1 \geq 0 \), e quindi per \(\alpha \geq 1 \) : in quest’ultimo caso, sicuramente la funzione non è continua nell’origine.

Per \(\alpha < 1 \), si ha:

\[\lim_{(x,y) \to (0,0), y > |x|^\alpha} \frac{x}{y} = \]
\[\frac{x}{y} \leq \frac{x}{x^\alpha} = x^{1-\alpha} \to 0 \quad \text{per} \alpha < 1 \]

Allora la funzione è continua nell’origine per \(\alpha < 1 \).
Derivabilità: Dato un punto \((x, 0)\) sull’asse \(y\), \(f_\alpha(x, 0) = 0\) per ogni \(\alpha\) e per ogni \(x\), e questo implica che \(\frac{\partial f}{\partial x}(0, 0)\) esiste e vale 0.

Qualsiasi punto \((0, y)\) con \(y > 0\) soddisfa l’equazione \(y > x^\alpha\) e la funzione vale \(\frac{0}{y} = 0\), Vale 0 anche sui punti \((0, y)\) con \(y < 0\), che si trovano nella regione di piano con \(y < |x|^\alpha\) dove la funzione è identicamente nulla, allora esiste anche \(\frac{\partial f}{\partial y}(0, 0)\) e vale 0.

Differenziabilità: per \(\alpha < 1\) ci si chiede se \(f_\alpha\) è differenziabile in \((0, 0)\). Se \(f\) non è continua non è differenziabile, quindi non può essere differenziabile per \(\alpha \geq 1\).

\[
\lim_{(h,k) \to (0,0)} \frac{f_\alpha(h, k) - f_\alpha(0, 0) - \frac{\partial f}{\partial x}(0, 0) * h - \frac{\partial f}{\partial y}(0, 0) * k}{\sqrt{h^2 + k^2}} = 0
\]

Se calcolo il limite con \((h, k) \in y < |x|^\alpha\) il limite è 0.

Per \((h, k) \in y > |x|^\alpha\)

\[
\lim_{(h,k) \to (0,0)} \frac{h/k}{\sqrt{h^2 + k^2}} = \infty
\]

In questo limite \(\alpha\) non compare. Se \((h, k) \in y > |x|^\alpha\) allora

\[k > |h|^\alpha \quad \rightarrow \quad \sqrt{h^2 + k^2} > \sqrt{h^2 + h^{2\alpha}}\]

Cerco una curva lungo cui:

\[
\lim_{(h,k) \to (0,0)} \frac{h}{k\sqrt{h^2 + k^2}} \neq 0
\]

Una possibilità è \(k = ch^{1/2}\) con \(c > 1\), infatti, lungo questa curva:

\[
\lim_{h \to 0} \frac{h}{ch^{1/2} \sqrt{h^2 + c^2|h|}} = \lim_{h \to 0} \frac{h}{c|h|\sqrt{|h| + c^2}}
\]

Per \(h \to 0\), la quantità tende a \(\pm 1/c^2 \neq 0\), e il limite non esiste.

Se i punti del tipo \((h, c * h^{1/2})\) appartengono all’insieme \(\{y > |x|^\alpha\}\) in cui la funzione non è identicamente nulla, la funzione non è differenziabile. Questo avviene quando:

\[k = c|h|^{1/2} \in \{y > |x|^\alpha\} \quad \rightarrow \quad c|h|^{1/2} > h^\alpha \quad \rightarrow \quad h^{\alpha - 1/2} < c\]

Cerco le soluzioni di quest’ultima disequazione.

Se \(\alpha > 1/2\) la disequazione è soddisfatta in un intervallo della forma \((-\tilde{h}, \tilde{h})\) con \(\tilde{h} > 0\), quindi per \(h \to 0\) le curve considerate appartengono a \(\{y > |x|^\alpha\}\).
1. Se \(\alpha = 1/2 \), ottengo la disuguaglianza \(1 < c \) che è sempre soddisfatta perché ho scelto \(c > 1 \), quindi posso ancora avvicinarmi all’origine lungo le curve \(k = c|h|^{1/2} \) per \(h \to 0 \).

2. Se \(\alpha < 1/2 \) otteno un insieme di soluzioni del tipo \((-\infty, -\bar{h}) \cup (\bar{h}, +\infty) \) quindi per \(h \to 0 \) la disequazione non è soddisfatta e le curve del tipo \(k = c|h|^{1/2} \) non rientrano nell’insieme \(\{ y > |x|^{\alpha} \} \), quindi non posso avvicinarmi all’origine lungo tali curve.

Si conclude quindi che e \(f_{\alpha} \) potrebbe essere differenziabile per \(\alpha < 1/2 \), mentre non lo è per \(\alpha \geq 1/2 \). Provo a calcolare il limite in un altro modo per \(\alpha < 1/2 \):

\[
\lim_{h \to 0} \frac{h}{k\sqrt{h^2 + k^2}} = \\
\frac{h}{k\sqrt{h^2 + k^2}} \leq \frac{h}{h^\alpha \sqrt{h^2 + |h|^{2\alpha}}} \\
\leq \frac{1}{h^\alpha \sqrt{1 + |h|^{2\alpha-2}}} \sim \frac{1}{h^\alpha |h|^{\alpha-1}} \leq \frac{1}{h^{2\alpha-1}} \to 0 \text{ per } \alpha < 1/2
\]

e quindi \(f_{\alpha} \) è differenziabile per \(\alpha < 1/2 \).

Esercizio 2.18

Discutere per \(\alpha > 0 \), continuità, derivabilità, ed differenziabilità nel punto \((0, 0)\) della funzione:

\[
f_{\alpha}(x, y) = \begin{cases}
\frac{1-\cos(xy)}{\sqrt{x^2 + y^2}} + x - y & \text{se } (x, y) \neq (0, 0) \\
0 & \text{se } (x, y) = (0, 0)
\end{cases}
\]

Continuità: Stabiliisco per quali valori di \(\alpha \)

\[
\lim_{(x, y) \to (0, 0)} f_{\alpha}(x, y) = 0
\]

\[
\lim_{(x, y) \to (0, 0)} \frac{1 - \cos(xy)}{\sqrt{x^2 + y^2}} + x - y =
\]

Siccome il limite della somma è la somma dei limiti, e siccome \(-x + y \to 0\), ottenmo:

\[
\lim_{(x, y) \to (0, 0)} \frac{1 - \cos(xy)}{\sqrt{x^2 + y^2}} = \\
1 - \cos t \sim t^2/2
\]

\[
\lim_{(x, y) \to (0, 0)} \frac{x^2y^2/2}{\sqrt{x^2 + y^2}} = \\
\frac{x^2y^2}{2(x^2 + y^2)^{\alpha/2}}
\]
Passo alle coordinate polari:

\[\lim_{\rho \to 0^+} \frac{\rho^4 \cos^2 \theta \sin^2 \theta}{2\rho^2} = \]
\[\lim_{\rho \to 0^+} 1/2 \cdot \rho^{4-\alpha} \cos^2 \theta \sin^2 \theta = \]
\[|1/2 \rho^{4-\alpha} \cos^2 \theta \sin^2 \theta| \leq |1/2 \rho^{4-\alpha}| \]
e per \(\rho \to 0 \):

\[\begin{cases}
\rho^{4-\alpha} \to 0 & \iff \alpha < 4 \\
\rho^{4-\alpha} \to 1 & \iff \alpha = 4 \\
\rho^{4-\alpha} \to +\infty & \iff \alpha > 4
\end{cases} \]

Allora sicuramente \(f \) è continua per \(\alpha < 4 \).

Invece, se \(\alpha \geq 4 \), posso avvicinarmi all’origine su una retta del tipo \(y = x \) e ottengo:

\[\lim_{x \to 0} \frac{1 - \cos x^2}{(2x^2)^{\alpha/2}} = \]
\[\lim_{x \to 0} \frac{x^4}{2\sqrt{2}(x^2)^{\alpha/2}} = \]
\[\lim_{x \to 0} \frac{x^{4-\alpha}}{2\sqrt{2}} = \]

Se \(\alpha = 4 \), il limite vale \(1/8 \neq 0 \), se \(\alpha > 4 \) il limite è \(+\infty \). Quindi la funzione non è continua nell’origine per \(\alpha \geq 4 \).

Derivabilità: Osservo che \(f_\alpha(x,0) = x \forall x \neq 0 \), allora \(\frac{\partial f_\alpha}{\partial x}(0,0) = 1 \). Invece \(f_\alpha(0,y) = -y \forall y \neq 0 \) quindi \(\frac{\partial f_\alpha}{\partial y}(0,0) = -1 \) e questo è vero \(\forall \alpha \).

Verifico la differentiabilità per \(0 < \alpha < 4 \),

\[\lim_{(h,k) \to (0,0)} \frac{1-\cos hk}{\sqrt{h^2+k^2}} + h - k - 0 - 1 \cdot h + k = \]
\[\lim_{(h,k) \to (0,0)} \frac{1-\cos(hk)}{(h^2+k^2)^{\alpha+1}/2} = \]
\[1 - \cos(hk) = h^2k^2/2 \]
\[\lim_{(h,k) \to (0,0)} \frac{h^2k^2}{2(h^2+k^2)^{\alpha+1}/2} = \]

In coordinate polari:

\[\lim_{\rho \to 0^+} \frac{\rho^4 \cos^2 \theta \sin^2 \theta}{2\rho^{\alpha+1}} = \]
Uniformemente in θ

$$\frac{\rho^4 \cos^2 \theta \sin^2 \theta}{2\rho^{\alpha+1}} \leq 1/2 \cdot \rho^{3-\alpha}$$

e per $\alpha < 3$ il limite tende a 0 e f_α è differenziabile.

Per $\alpha \geq 3$, si cerca una direzione lungo la quale il limite non vale 0. Consideriamo nuovamente la curva $k = h$, lungo cui si ha:

$$\lim_{h \to 0} \frac{h^4}{2\sqrt{2}h^{\alpha+1}} =$$

$$\lim_{h \to 0} \frac{h^{3-\alpha}}{2\sqrt{2}} =$$

Siccome $\alpha \geq 3$, il limite non tende a 0, e la funzione non è differenziabile per $\alpha > 3$.

Esercizio 2.19

Per ogni $\alpha \in (0, +\infty)$ si consideri la funzione

$$f_\alpha(x, y) = \begin{cases} \frac{\sin(x-y)|^\alpha}{|x^2-y^2|} + 1, & \text{se } x \neq y \text{ e } x \neq -y, \\ 1, & \text{altrove.} \end{cases}$$

Si discutano la continuità e la differenziabilità di f_α al variare di $\alpha \in (0, +\infty)$.

Continuità: Studio la continuità sulla bisettrice $y = x$

$$\lim_{x-y \to 0} \frac{\sin(x-y)|^\alpha}{|x^2-y^2|} + 1$$

$x - y \to 0$, $\sin(x-y) \sim x - y$

$$\lim_{x-y \to 0} \frac{|(x-y)|^\alpha}{|(x-y)(x+y)|} + 1$$

$$\lim_{x-y \to 0} \frac{|(x-y)|^{\alpha-1}}{|x+y|} + 1 =$$

Per $\alpha > 1$ il numeratore tende a 0, e il limite fa 1, la funzione è continua su $y = x$.

Per $\alpha < 1$ il limite tende a $+\infty$ e la funzione non è continua.

Sulla bisettrice $t = -x$

$$\lim_{x+y \to 0} \frac{\sin|x-y|^\alpha}{|x^2-y^2|} + 1$$

$$\lim_{x+y \to 0} \frac{\sin|x-y|^\alpha}{|(x-y)(x+y)|} + 1 = +\infty \forall \alpha$$
infatti la quantità al numeratore è limitata mentre \(x + y \to 0 \). Allora la funzione non è continua sulla bisettrice \(y = -x \) tranne l’origine.

Verifichiamo la continuità nell’origine.

\[
\lim_{(x,y) \to (0,0)} \frac{|\sin(x - y)|^\alpha}{|x^2 - y^2|} + 1
\]

\[
\sin(x - y) \to x - y
\]

\[
\lim_{(x,y) \to (0,0)} \frac{|x - y|^\alpha - 1}{|x + y|} + 1
\]

La funzione è continua per \(\alpha > 1 \), perché il numeratore tende a 0 più rapidamente del denominatore e il limite fa 1, mentre per \(\alpha < 1 \) tende a \(+\infty \).

Riassumendo, \(f \) è continua per \(\alpha > 1 \) sulla bisettrice \(y = x \) e nell’origine.

Derivabilità: verifico l’esistenza delle derivate parziali sulla bisettrice \(y = x \)

\[
\frac{\partial f}{\partial x} =
\]

\[
= \lim_{h \to 0} \frac{f(x + h, x) - f(x, x)}{h}
\]

\[
= \lim_{h \to 0} \frac{(\sin h)^\alpha}{h} \frac{1}{|x^2 + h^2 + 2hx - x^2|} + 1 - 1
\]

\[
= \lim_{h \to 0} \frac{h^\alpha}{h} = \alpha h^{\alpha - 1}
\]

\[
= \lim_{h \to 0} \frac{h^{\alpha - 2}}{|h + 2x|} = 0
\]

\[
= \lim_{h \to 0} \frac{h^\alpha}{|2x|} = 0
\]

e la derivata parziale rispetto a \(x \) esiste per i punti sulla bisettrice e per \(\alpha > 1 \).

Invece nell’origine:

\[
= \lim_{h \to 0} \frac{(\sin h)^\alpha}{|h|^2} + 1 - 1
\]

\[
= \lim_{h \to 0} h^{\alpha - 1} = 0 \text{ per } \alpha > 1
\]

\[
\frac{\partial f}{\partial y}(x, x) = 0
\]

\[
\frac{\partial f}{\partial y}(0, 0) = 0
\]

per simmetria dei ruoli di \(x \) e \(y \) nella funzione.

Differenziabilità nell’origine:
\[\lim_{{(h,k) \to (0,0)}} \frac{f(h,k) - 1}{\sqrt{h^2 + k^2}} = \]

\[\lim_{{(h,k) \to (0,0)}} \frac{1}{\sqrt{h^2 + k^2}} \frac{|\sin(h-k)|^\alpha}{|h^2 - k^2|} = \]

\[\lim_{{(h,k) \to (0,0)}} \frac{1}{\sqrt{h^2 + k^2}} \frac{(h-k)^\alpha}{|(h-k)(h+k)|} = \]

\[\lim_{{(h,k) \to (0,0)}} \frac{(h-k)^{\alpha-1}}{(h+k)\sqrt{h^2 + k^2}} = \]

In coordinate polari:

\[\lim_{{\rho \to 0}} \frac{\rho^{\alpha-1} (\cos \theta - \sin \theta)}{\rho (\cos \theta + \sin \theta) \rho} = \]

\[\lim_{{\rho \to 0}} \frac{\rho^{\alpha-3} (\cos \theta - \sin \theta)}{(\cos \theta + \sin \theta)} = \]

e il limite tende a 0 uniformemente in \(\theta \) per \(\alpha > 3 \), quindi per \(\alpha > 3 \) la funzione è sicuramente differenziabile nell’origine.

Per \(\alpha = 3 \):

\[\lim_{{(h,k) \to (0,0)}} \frac{(h-k)^2}{(h+k)\sqrt{h^2 + k^2}} = \]

\[\lim_{{(h,k) \to (0,0)}} \frac{h^2 + k^2}{(h+k)\sqrt{h^2 + k^2}} - \frac{2hk}{(h+k)\sqrt{h^2 + k^2}} = \]

\[\lim_{{(h,k) \to (0,0)}} \frac{(h^2 + k^2)^{1/2}}{h + k} - \frac{2hk}{(h+k)\sqrt{h^2 + k^2}} = \]

e il limite non tende a 0, infatti sulla curva \(h = k \) si ha

\[\lim_{{h \to 0}} \frac{1 - \frac{2h^2}{2h^2\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 - \frac{1}{\sqrt{2}} \neq 0 \]

allora la funzione non è differenziabile per \(\alpha = 3 \) e nemmeno per \(\alpha < 3 \).
Capitolo 3

Studio di punti critico

3.1 Richiami teorici

1. Un punto \(x_0 \in D \) è detto punto di minimo locale se esiste un intorno \(B_{x_0,r} \) tale che
\[
f(x_0) \leq f(x) \forall x \in B_{x_0,r}
\]
(se vale la disuguaglianza con il minore stretto ottengo un punto di minimo locale forte) Vale la definizione opposta per i massimi locali.

2. Sia \(D \subset \mathbb{R}^n \) aperto. Un punto \(x_0 \in D \) si dice critico per la funzione \(f \) se
\[
\nabla f(x_0) = 0.
\]
Massimi e minimi locali appartengono all’insieme dei punti critici.

3. **Generalizzazione del teorema di Fermat**: se \(x_0 \) è un punto di minimo o massimo locale, e \(x_0 \in \mathring{D} \), allora \(\nabla f(x_0) = 0 \).

4. La matrice hessiana \(H_f(x,y,z) \) è la matrice delle derivate seconde:
\[
\begin{array}{cccc}
\frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial z \partial x} \\
\frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial y} & \frac{\partial^2 f}{\partial y \partial z} \\
\frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z \partial z}
\end{array}
\]
e se vale il teorema di Schwartz la matrice è simmetrica.

5. **Test dell’hessiana per matrici** \(3 \times 3 \): Se il determinante dell’hessiana di \(f \) nel punto \((x_0,y_0,z_0) \) è positivo, se il determinante della sottomatrice \(2 \times 2 \) in alto a sinistra è positivo, e se \(\frac{\partial^2 f}{\partial x \partial z}(x_0,y_0,z_0) > 0 \), allora \((x_0,y_0,z_0) \) è di minimo locale. Invece se l’elemento \(\frac{\partial^2 f}{\partial y \partial z} \) è e il determinante della matrice sono negativi, e se il determinante della sottomatrice \(2 \times 2 \) è positivo, ho un punto di massimo locale. Se det \(H_f \neq 0 \) ma le altre condizioni non sono soddisfatte allora \((x_0,y_0,z_0) \) è un punto di sella.

6. **Test dell’hessiana per matrici** \(2 \times 2 \):
\[
H_f = \begin{pmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
\frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
\end{pmatrix}
\]
se det $H_f > 0$ e $\frac{\partial^2 f}{\partial x \partial z} > 0$ ho un punto di minimo locale. Invece se det $H_f > 0$ ma $\frac{\partial^2 f}{\partial x \partial z} < 0$ allora il punto è di massimo locale. Se det $H_f \neq 0$ e $\frac{\partial^2 f}{\partial x \partial z} = 0$ ho un punto di sella.

Vale inoltre il seguente teorema:

Teorema 3.1

Sia $f : \mathbb{R}^n \to \mathbb{R}$ continua su tutto \mathbb{R}^n. Supponiamo che

$$\lim_{|x| \to +\infty} f(x) = +\infty$$

allora esiste un punto di minimo per f.

Dimostrazione

Consideriamo un qualsiasi $r_1 > 0$. Nella palla chiusa centrata nell’origine e di raggio r_1 si può applicare il teorema di Weierstrass, infatti f è continua, allora nella palla chiusa esiste il minimo di f. Chiamiamo questo minimo m. Dato m, esiste $r_2 > 0$ tale che se $|x| > r_2$, allora $f(x) > m$ (per l’ipotesi che $\lim_{|x| \to +\infty} f(x) = +\infty$). Non è restrittivo supporre $r_2 \geq r_1$. Allora

$$\min_{x \in B_{O;r_2}} f \leq m \leq \inf_{x \in B_{O;r_2}} f$$

e quindi

$$\min_{x \in B_{O;r_2}} f = \min_{\mathbb{R}^n} f,$$

cioè f ammette minimo.

cvd

3.2 Studio di punto critico

Esercizio 3.1

Sia data

$$f(x, y, z) = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + xyz$$

Cercare i punti critici della funzione, studiarne la natura e dire se f ha punti di massimo e minimo assoluto.

Il dominio di f non coincide con \mathbb{R}^3, perché devono essere $x \neq 0, y \neq 0, z \neq 0$.

1. Cerco i punti critici di f all’interno del dominio.

$$\frac{\partial f}{\partial x}(x, y, z) = -\frac{1}{x^2} + yz$$
\[\frac{\partial f}{\partial y}(x, y, z) = -1/y^2 + xz \]
\[\frac{\partial f}{\partial z}(x, y, z) = -1/z^2 + xy \]

Per cercare i punti critici pongo \(\nabla f(x, y, z) = 0 \), e ottengo il sistema:
\[
\begin{align*}
-1/x^2 + yz &= 0 \\
-1/y^2 + xz &= 0 \\
-1/z^2 + xy &= 0
\end{align*}
\]

Moltiplico la prima equazione per \(x \), la seconda per \(y \) e la terza per \(z \) in modo che compaia in tutte e tre il termine \(xyz \).
\[
\begin{align*}
-1/x + xyz &= 0 \\
-1/y + xyz &= 0 \\
-1/z + xyz &= 0
\end{align*}
\]

Sotraggo la prima equazione alla seconda e alla terza.
\[
\begin{align*}
-1/x + xyz &= 0 \\
-1/y + 1/x &= 0 \\
-1/z + 1/x &= 0
\end{align*}
\]
\[
\begin{align*}
-1/x + xyz &= 0 \\
y - z &= 0 \\
\frac{y - z}{xy} &= 0
\end{align*}
\]

Allora \(x = y \) e \(z = x \), quindi, sostituendo questa informazione nelle equazioni di partenza ottengo:
\[-1/x + x^3 = 0, \quad x^4 = 1 \quad \rightarrow \quad x = \pm 1 \]

Ho due punti critici:
\(p_1(1, 1, 1) \)
\(p_2(-1, -1, -1) \)

2. Studio la natura dei punti critici e ricorro alla matrice hessiana:
\[\frac{\partial^2 f}{\partial x^2} = 2x^{-3} \]
\[\frac{\partial^2 f}{\partial y^2} = 2y^{-3} \]
\[\frac{\partial^2 f}{\partial z^2} = 2z^{-3} \]
\[\frac{\partial^2 f}{\partial x \partial y} = z \]
\[\frac{\partial^2 f}{\partial x \partial z} = y \]
Capitolo 3. Studio di punti critici

\[\frac{\partial^2 f}{\partial y \partial z} = x \]

Allora

\[H_f(x, y, z) = \begin{pmatrix} 2x^{-3} & z & y \\ z & 2y^{-3} & x \\ y & x & 2z^{-3} \end{pmatrix} \]

Chiamiamo \(H_1 \) l’elemento dell’hessiana in prima posizione, \(H_2 \) la matrice \(2 \times 2 \) in alto a sinistra e \(H_3 \) l’hessiana, e valuto queste matrici nei punti critici:

\[H_3(1, 1, 1) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \]

\[H_2(1, 1, 1) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \]

\[\det H_1(1, 1, 1) = 2 > 0 \]

\[\det H_2(1, 1, 1) = 4 - 1 = 3 > 0 \]

\[\det H_3(1, 1, 1) = 6 - 1 - 1 = 4 > 0 \]

Siccome tutti i determinanti sono positivi, (1, 1, 1) è un punto di minimo locale.

\[H_f(-1, -1, -1) = -H_f(1, 1, 1) \]

allora

\[\det H_3(-1, -1, -1) < 0 \]

Invece

\[\det H_2(-1, -1, -1) > 0 \text{ matrice di ordine pari} \]

\[\det H_1(-1, -1, -1) = -2 < 0 \]

Allora (-1, -1, -1) è un punto di massimo locale.

3. Determino se i punti sono di massimo o minimo assoluto:

\[f(1, 1, 1) = 4 \]

\[f(-1, -1, -1) = -4 \]

Considero:

\[\lim_{x \to 0^+, y = 1, z = 1} \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + xyz = \frac{1}{x} + 2 = \pm \infty \]

allora ho punti di massimo e minimo locali ma non assoluti.

Esercizio 3.2

Si stabilisca per quali valori di \(\alpha \in \mathbb{R} \) la funzione

\[f_\alpha(x, y) = \alpha x^2 + e^{-y^2} - 2x \]

ha almeno un punto di massimo locale in \(D = \{(x, y) \in \mathbb{R}^2 : 4x^2 + 9y^2 < 9\} \).
Studio le derivate parziali in un generico punto \((x, y) \in \hat{D}\).

\[
\frac{\partial f}{\partial x} = 2\alpha x - 2 \\
\frac{\partial f}{\partial y} = -2y e^{-y^2}
\]

\(\nabla f = 0 \rightarrow \begin{cases}
2\alpha x - 2 = 0 \\
-2y e^{-y^2} = 0
\end{cases}\)

\((1/\alpha, 0)\), con \(\alpha \neq 0\) è un punto stazionario. Verifico per quali valori di \(\alpha\) il punto \((1/\alpha, 0)\) appartiene a \(D\).

\[(1/\alpha, 0) \in \{4x^2+9y^2 < 9\} \iff 4\times 1/\alpha^2 < 9 \rightarrow 9\alpha^2 > 4 \rightarrow \alpha = \sqrt{2/3} \rightarrow \alpha < -2/3 \lor \alpha > 2/3\]

Allora per \(\alpha < -2/3\) o \(\alpha > 2/3\), \((1/\alpha, 0) \in \hat{D}\) e

\[f_\alpha(1/\alpha, 0) = 1/\alpha + 1 - 2/\alpha = -1/\alpha + 1 = (\alpha - 1)/\alpha\]

Scrivo l’hessiana:

\[
\frac{\partial^2 f}{\partial^2 x} = 2\alpha \\
\frac{\partial^2}{\partial x \partial y} = 0 \\
\frac{\partial^2 f}{\partial^2 y} = 4y^2 * e^{-y^2} - 2e^{-y^2} = (4y^2 - 2) * e^{-y^2}
\]

\[H_f(1/\alpha, 0) = \begin{pmatrix} 2\alpha & 0 \\ 0 & -2 \end{pmatrix}\]

Segue che det \(H_1 = 2\alpha\), det \(H_2 = -4\alpha\), e se det \(H_2 > 0\) e det \(H_1 < 0\), \(f_\alpha\) ha almeno un punto di massimo locale, e, considerando \(\alpha \in (1/\alpha, 0) \in \hat{D}\), le condizioni sono soddisfatte per \(\alpha < -2/3\).

Esercizio 3.3

Si determinino i punti stazionari delle seguenti funzioni, discutendone la natura (si stabilisca cioè, per ciascun punto stazionario, se si tratta di un punto di massimo locale, di minimo locale o di sella).

1. \(f_1 : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f_1(x, y) = x^8 + (x - y)^2\)

Cerco i punti stazionari che annullano il gradiente di \(f\), quindi calcolo le derivate parziali:

\[
\frac{\partial f}{\partial x} = 8x^7 + 2x - 2y
\]
\[
\frac{\partial f}{\partial y} = -2(x - y) = 2y - 2x
\]
e risolvo il sistema:
\[
\begin{cases}
2y - 2x = 0 \\
8x^7 + 2x - 2y = 0
\end{cases}
\]
Dalla prima equazione ricavo \(y = x \). Sostituendo nella seconda equazione:
\[
8x^7 + 2x - 2x = 0, \quad \rightarrow \quad 8x^7 = 0
\]
e si ottiene che l’unico punto stazionario è l’origine \((0,0)\). Osservo che la funzione è sempre positiva perché somma di due quadrati, e si annulla solo nell’origine, allora l’origine è necessariamente un punto di minimo assoluto.

2. \(f_2 : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f_2(x, y) = y(x^2 + y) \)
\[
\nabla F = (2xy, 2y + x^2)
\]
Dalla seconda equazione ricavo \(y = -1/2x^2 \), quindi sostituendo nell’altra equazione ricavo \(-x^3 = 0\), quindi \(x = 0 \), e l’unico punto stazionario è l’origine. Osservo che nell’origine la funzione vale 0, e in un intorno dell’origine, se \(y < 0 \), si ha necessariamente \(y < x^2 \) e la funzione è prodotto di due quantità negative ed è quindi positiva. Se invece \(y > 0 \), si può avere \(y > x^2 \) oppure \(y < x^2 \) quindi la funzione cambia segno in un intorno dell’origine, che è un punto di sella.

3. \(f_3 : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f_3(x, y) = x^6 - \sin y - y^2 + y \)
\[
\frac{\partial f}{\partial x} = 6x^5
\]
\[
\frac{\partial f}{\partial y} = -\cos y - 2y + 1
\]
\[
\begin{cases}
6x^5 = 0 \\
\cos y = 1 - 2y
\end{cases}
\]
Le due equazioni sono disaccoppiate: dalla prima ricavo \(x = 0 \), e dalla seconda \(y = 0 \), quindi l’unico punto stazionario è l’origine. Cerco di applicare il criterio dell’hessiana:
\[
H_f(x, y) = \begin{pmatrix}
30x^4 & 0 \\
0 & \sin y - 2
\end{pmatrix}
\]
Osservo che il criterio dell’hessiana fallisce perché \(H_f((0,0)) = 0 \). Studio il segno della funzione in un intorno di 0. Per \(y = 0 \), si ha \(f(x) = x^6 \) e la funzione sempre positiva. Invece, per \(x = 0 \), si ha
\[
f(x) = -\sin y - y^2 + y = -(y - y^3/6 + o(y^3)) - y^2 + y = -y + y^3/6 - y^2 + y = -y^2 + y^3/6 < 0, \quad \iff \quad y > -y^2 + y^3/6
\]
allora \((0,0)\) è un punto di sella, perché la funzione cambia segno in un intorno dell’origine.
Esercizio 3.4

Calcolare la distanza fra le rette

\[r_1 = \begin{cases} x = 0 \\ y = 0 \end{cases} \]

\[r_2 = \begin{cases} x = 3 \\ z = 2y \end{cases} \]

Si ricorda che

\[d(R_1, R_2) = \inf_{p_1 \in R_1, p_2 \in R_2} |p_1 - p_2|. \]

Allora scrivo le equazioni parametriche delle rette:

\[R_1 = \begin{cases} x = 0 \\ y = 0 \end{cases} \]

\[R_2 = \begin{cases} x = 3 \\ y = t \end{cases} \]

Allo il generico punto di \(R_1 \) è della forma \(p_1 = (0, 0, s) \) mentre il generico punto della retta \(R_2 \) è \(p_2(3, t, 2t) \).

\[|p_1 - p_2| = \sqrt{(0 - 3)^2 + (0 - t)^2 + (s - 2t)^2} = \sqrt{9 + t^2 + s^2 + 4t^2 - 4st} = \sqrt{9 + t^2 + (s - 2t)^2} \]

La radice è somma di quantità positive, e siccome la funzione che a \(x \) associa \(\sqrt{x} \) è crescente, allora

\[\inf_{(s,t) \in \mathbb{R}^2} \sqrt{9 + t^2 + (2t - s)^2} = \inf_{(s,t) \in \mathbb{R}^2} (9 + t^2 + (2t - s)^2) \]

\[9 + t^2 + (2t - s)^2 \geq g(s,t) \in \mathbb{R}^2 \]

\[g(0,0) = 9 \]

(0, 0) è punto di minimo, per \(t = 0, s = 0 \) ottengo

\[|p_2 - p_1| = \sqrt{9} = 3 \]

che è la distanza tra le due rette.

Esercizio 3.5

Data la funzione
Capitolo 3. Studio di punti critici

\[f(x, y) = (x^4 + y^4) * e^{-(x^2 + y^2)/2} \]

Cercare tutti i punti critici in \(\mathbb{R}^2 \) e studiarne la natura.
I punti critici risolvono l’equazione \(\nabla f(P) = 0 \).

\[
\begin{align*}
 f_x &= 4x^3 * e^{-(x^2 + y^2)/2} + (x^4 + y^4) * e^{-(x^2 + y^2)/2} * (-x) = x e^{-(x^2 + y^2)/2} * [4x^2 - x^4 - y^4] \\
 f_y &= e^{-(x^2 + y^2)/2} * y * (4y^2 - x^4 - y^4) \\
 \nabla f = 0 &\rightarrow f_x = 0 \land f_y = 0
\end{align*}
\]

\(e^{-(x^2 + y^2)/2} \) non si annulla mai, quindi ho il sistema:

\[
\begin{cases}
 x * (4x^2 - x^4 - y^4) = 0 \\
 y * (4y^2 - x^4 - y^4) = 0
\end{cases}
\]

La prima equazione è soddisfatta se \(x = 0 \) oppure se \(4x^2 - x^4 - y^4 = 0 \). Se \(x = 0 \), la seconda equazione diventa:

\[y^4 * (4 - y^2) = 0 \]
che ha le soluzioni \(y = 0 \), \(y = \pm 2 \). Allora ho i punti critici \(p_1(0, 0), p_2(0, 2), p_3(0, -2) \), e, per simmetria dei ruoli di \(x \) e \(y \) nella definizione di \(f \), anche \(p_4(-2, 0) \) e \(p_5(2, 0) \) sono punti critici.

Invece, se \(4x^2 - x^4 - y^4 = 0 \), si ha \(x^4 = 4x^2 - y^4 \), e sostituendo l’espressione di \(x^4 \) nella seconda equazione otteniamo:

\[4y^2 - (4x^2 - y^4) - y^4 = 0 \]
\[4y^2 - 4x^2 = 0 \]
\[y^2 = x^2 \iff y = \pm x \]

Risostituendo nell’espressione di \(x^4 \):

\[x^4 = -x^4 + 4x^2 \]
\[2x^4 = 4x^2, \quad \therefore x^4 = 2x^2 \]
e Supponendo \(x \neq 0 \) si ha:

\[x^2 = 2 \iff x = \pm \sqrt{2} \]
Ci sono quindi anche i punti critici

\[p_6(\sqrt{2}, \sqrt{2}), p_7(-\sqrt{2}, \sqrt{2}), p_8(\sqrt{2}, -\sqrt{2}), p_9(-\sqrt{2}, -\sqrt{2}) \]
Riassumendo i punti critici sono:
e devo studiarne la natura. Applico il criterio dell’hessiana:

\[f_{xx} = e^{-(x^2+y^2)/2}(-9x^4 + x^6 + x^2y^4 + 12x^2 - y^4) \]
\[f_{yy} = e^{-(x^2+y^2)/2}(-9y^4 + y^6 + y^2x^4 + 12y^2 - x^4) \]
\[f_{xy} = f_{yx} = e^{-(x^2+y^2)/2}(-xy) * (4x^2 - x^4 - y^4) + e^{-(x^2+y^2)/2} * x * (-4y^3) = \]
\[= -xy * e^{-(x^2+y^2)/2} * (4x^2 - x^4 - y^4 + 4y^2) \]

\(H_f(0, 0) \) è la matrice nulla, e non si può definire la natura di questo punto con il criterio dell’hessiana.

\[
H_f((2, 0)) = \begin{pmatrix} -e^{-2} \cdot 64 & 0 \\ 0 & -16e^{-2} \end{pmatrix}
\]

\(H_1 < 0 \) , det \(H_2 > 0 \) quindi \(p_4(2, 0) \) è un punto di massimo locale.

\(H_f((2, 0)) \) coincide con \(H_f((2, 0)) \) perché \(x, y \) compaiono elevati a potenze di ordine pari, allora anche \((-2, 0)\) è di massimo locale.

\(H_f((0, 2)) \) è uguale a \(H_f((2, 0)) \) ma con gli elementi sulla diagonale invertiti, quindi anche \((0, 2)\) e \((0, -2)\) sono altri punti di massimo locale.

\[
H_f((\sqrt{2}, \sqrt{2})) = \begin{pmatrix} e^{-2} \cdot (-36 + 8 + 8 + 24 - 4) = 0 & -e^{-2} \cdot 16 \\ -e^{-2} \cdot 16 & 0 \end{pmatrix}
\]

il determinante dell’hessiana è negativo, allora ho un punto di sella (la matrice non è definita).

Anche tutti gli altri casi sono riconducibili a questo, infatti:

\[
H_f((-\sqrt{2}, -\sqrt{2})) = H_f((\sqrt{2}, \sqrt{2}))
\]
\[
H_f((\sqrt{2}, -\sqrt{2})) = H_f((-\sqrt{2}, \sqrt{2})) = -H_f((\sqrt{2}, \sqrt{2}))
\]

quindi \(p_6, p_7, p_8, p_9 \) sono tutti punti di sella.

Per poter capire di che natura è l’origine, basta osservare che la funzione è sempre definita positiva, e si annulla solo in \((0, 0)\), allora l’origine è un punto di minimo assoluto.

Esercizio 3.6

Trovare massimo e minimo assoluto di

\[f(x, y) = x^2 + y - xy \]

nell’insieme del piano.
L’insieme D è un triangolo nel primo quadrante, delimitato dalla retta $y = 4 - x$, la funzione f considerata è continua e per il teorema di Weierstrass ammette massimo e minimo sul compatto D.

Le derivate di f non sono ben definite sul bordo dell’insieme. In questi casi, l’esercizio si divide in due parti: prima trovo i punti critici di f che stanno all’interno del dominio D, poi studio la funzione sul bordo dell’insieme.

1. **Punti critici all’interno dell’insieme**:

$$\frac{\partial f}{\partial x} = 2x - y$$

$$\frac{\partial f}{\partial y} = -x + 1$$

L’unico punto che annulla il gradiente è $P_1 = (2, 1)$, e appartiene a D.

2. **Punti critici sul bordo**: il bordo ha tre componenti:

$$b_1 = \{(x, y) \in \mathbb{R}^2 t.c. x = 0, \ 0 < y < 4\}$$

$$b_2 = \{(x, y) \in \mathbb{R}^2 t.c. y = 0, \ 0 < x < 4\}$$

$$b_3 = \{(x, y) \in \mathbb{R}^2 t.c. x + y = 4\}$$

Considero f ristretto a b_1. Devo trovare una parametrizzazione del segmento. Lo studio di f sul bordo si riduce allo studio di una funzione in una variabile:

$$f_{b_1}(y) = f(0, y) = y, \ 0 < y < 4$$

Siccome f_{b_1} è crescente in $(0, 4)$, il suo minimo è $f(0, 0) = 0$ e il suo massimo è $f(0, 4) = 4$. La funzione ristretta a b_2 invece è $f_{b_2}(x) = f(x, 0) = x^2$, che è monotona crescente, il minimo è $f(0, 0) = 0$ e il massimo è $f(4, 0) = 16$. Per la terza componente del bordo:

$$f_{b_3} = f(x, 4 - x) = x^2 + 4 - x - x(4 - x) = 2x^2 - 5x + 4, \ 0 < x < 4$$

ho l’equazione di una parabola, studiamo massimo e minimo.

$$f'_{b_3} = 4x - 5$$

$$4x - 5 = 0 \iff x = 5/4$$

La concavità della parabola è rivolta verso l’alto, quindi $x = 5/4$ è un punto di minimo per la f ristretta a b_3, e il minimo di f è

$$f(5/4, 4 - 5/4) = f(5/4, 11/4) = 25/16 - 55/16 + 11/4 = 14/16 = 7/8$$

$$f(1, 2) = 1 - 2 + 2 = 1$$

Confronto i valori della funzione nei possibili punti di massimo e minimo assoluto:
Capitolo 3. Studio di punti critici

Punti stazionari: \(f((1, 2)) = 1 \), \(f((0, 0)) = 0 \), \(f((0, 4)) = 4 \), \(f((4, 0)) = 16 \), \(f((5/4, 11/4)) = 7/8 \).

Allora 16 è il massimo di \(f \) in \(D \) e 0 è il minimo, allora il punto di massimo è \((4, 0)\) e il punto di minimo \((0, 0)\).

Esercizio 3.7

Trovare tutti i punti critici della funzione

\[f(x, y, z) = (x^3 - 3x - y^2) * z^2 + z^3 \]

e determinarne la natura.

\[\frac{\partial f}{\partial x} = 3(x^2 - 1) * z^2 \]
\[\frac{\partial f}{\partial y} = -2 * y * z^2 \]
\[\frac{\partial f}{\partial z} = 2z * (x^3 - 3x - y^2) + 3z^2 \]

quindi i punti che annullano il gradiente si ottengono risolvendo il sistema:

\[\begin{cases} 3(x^2 - 1) * z^2 = 0 \\ -2 * y * z^2 = 0 \\ 2z * (x^3 - 3x - y^2) + 3z^2 = 0 \end{cases} \]

Osserviamo che \(z = 0 \) annulla tutte le equazioni, allora i punti della forma \((x, y, 0)\) sono stazionari.

Invece nel caso \(z \neq 0 \) divido per \(z^2 \)

\[\begin{cases} 3(x^2 - 1) = 0 \\ -2 * y = 0 \\ 2/z * (x^3 - 3x - y^2) + 3 = 0 \end{cases} \]

Dalla prima equazione ricavo \(x = \pm 1 \), dalla seconda \(y = 0 \), e sostituendo nella terza ottengo \(z = 4/3 \) allora anche \((1, 0, 4/3)\) e \((-1, 0, -4/3)\) sono punti critici.

Allora tutti i punti critici della funzione sono \(p_1 = (1, 0, 4/3) \) \(p_2 = (-1, 0, -4/3) \) , \(p_{xy} = (x, y, 0) \) con \(x, y \in \mathbb{R} \).

Applico il criterio dell’hessiana:

\[f_{xx} = 6z^2 x \]
\[f_{xy} = 0 \]
\[f_{xz} = 6(x^2 - 1) * z \]
\[f_{yy} = -2z^2 \]
\[f_{yz} = -4yz \]
La matrice è già in forma diagonale, allora

\[
det H_3 = \frac{32}{3} * (-\frac{32}{9}) * 4 < 0 \\
det H_2 = \frac{32}{3} * (-\frac{32}{9}) + 0 < 0 \\
det h_1 = \frac{32}{3} > 0
\]

allora \((1,0,4/3)\) è un punto di sella, infatti la matrice è indefinita.

\[
H_f(-1,0,-4/3) = \begin{pmatrix}
\frac{32}{3} & 0 & 0 \\
0 & -\frac{32}{9} & 0 \\
0 & 0 & -2
\end{pmatrix}
\]

\[
det H_3 < 0 \\
det H_2 > 0 \\
det H_1 < 0
\]

Allora l’hessiana è definita negativa e \((1,0,4/3)\) è un punto di massimo.

\[
H_f(x,y,0) = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2 * (x^3 - 3x - y^2)
\end{pmatrix}
\]

La matrice è semidefinita e non ho nessuna conclusione.

Devo provare che \(f(x,y,z) \geq f(x_0,y_0,0)\)\(\forall (x,y,z) \in U(x_0,y_0,0)\) oppure \(f(x,y,z) \leq f(x_0,y_0,0)\)\(\in U(x_0,y_0,0)\) oppure che non valga nessuna delle due disuguaglianze.

\[
f(x,y,z) = z^2 * (x^3 - 3x - y^2 + z), \quad g(x,y,z) = x^3 - 3x - y^2 + z \\
(x_0,y_0) \in \mathbb{R}^2 \rightarrow f(x_0,y_0,0) = 0
\]

invece

\[
g(x_0,y_0,0) = x_0^3 - 3x_0 - y_0^2
\]

Supponiamo che \(x_0^3 - 3x_0 - y_0^2 > 0\) allora per il teorema della permanenza del segno esiste un intorno \(U((x_0,y_0,0))\) tale che

\[
g(x,y,z) > 0 \ \forall (x,y,z) \in U
\]

ma allora

\[
f(x,y,z) = z^2 * g(x,y,z) > 0 = f(x_0,y_0,0)\forall (x,y,z) \in U
\]
(cioè vale la definizione di minimo locale).

Possiamo concludere che $(x_0, y_0, 0)$ è punto di minimo locale per x_0, y_0 tali che:

$$x_0^3 - 3x_0 - y_0^2 \geq 0$$

Analogamente, se $(x_0, y_0, 0)$ è tale che

$$x_0^3 - 3x_0 - y_0^2 < 0$$

allora il punto $(x_0, y_0, 0)$ è di massimo locale.

Rimangono i punti per cui

$$x_0^3 - 3x_0 - y_0^2 = 0$$

Siano (x_0, y_0) tali che

$$x_0^3 - 3x_0 - y_0^2 = 0$$

allora $f(x_0, y_0, z) = z^3$ e cambia segno per z in ogni intorno di 0.

In particolare quest’espressione cambia segno per (x, y, z) in ogni intorno del punto $(x_0, y_0, 0)$, allora se $(x_0, y_0, 0)$ è tale che

$$x_0^3 - 3x_0 - y_0^2 = 0$$

allora $(x_0, y_0, 0)$ è un punto di sella.

In questo caso i punti di massimo o di minimo non sono assoluti, perché il limite della funzione per $x \to \pm \infty$ tende a $\pm \infty$.

Esercizio 3.8

Sia $f(x, y) = x^2 - y^2 + e^{x^2+y^2}$

1. Trovare i punti critici di f e studiarne la natura.

 $$f_x = 2x + e^{x^2+y^2} * 2x = 2x * (e^{x^2+y^2} + 1)$$

2. Sia $R > 0$, provare se esistono massimo e minimo della funzione f nella palla $B_{r,0}$.

Punti critici:

$$f_x = 2x + e^{x^2+y^2} * 2x = 2x * (1 + e^{x^2+y^2})$$

$$f_y = -2y + e^{x^2+y^2} * 2y = 2y * (e^{x^2+y^2} - 1)$$
\[
\begin{aligned}
2x \cdot (e^{x^2+y^2} + 1) &= 0 \\
2y \cdot (e^{x^2+y^2} - 1) &= 0
\end{aligned}
\]

La prima equazione si annulla solo per \(x = 0 \), nella seconda allora si ha:
\[
2y \cdot (e^{y^2} - 1) = 0
\]
e si ricava per \(y = 0 \).

Allora \((0,0)\) è l’unico punto critico.

\[
\begin{aligned}
f_{xx} &= 2 \cdot (e^{x^2+y^2} + 1) + 4x^2 \cdot e^{x^2+y^2} \\
f_{yy} &= 2 \cdot (e^{x^2+y^2} - 1) + 4y^2 \cdot e^{x^2+y^2} \\
f_{xy} &= 4xye^{x^2+y^2} \\
H_f(0,0) &= \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}
\end{aligned}
\]

L’hessiana è semidefinita e non possiamo concludere nulla.

Allora si considera il seguente teorema. Se una funzione \(f \) è continua e il limite per \(|x| \to +\infty\) tende a \(+\infty\), allora \(f \) ammette un minimo. Siccome ho trovato un unico punto critico, se questo teorema si può applicare, il punto sarà un minimo:

Verifico quindi se
\[
\lim_{|(x,y)| \to +\infty} f(x,y) = +\infty
\]

\[
f(x,y) = x^2 - y^2 + e^{x^2+y^2} \geq -x^2 - y^2 + e^{x^2+y^2}
\]

\[
\lim_{|(x,y)| \to +\infty} f(x,y) \geq \lim_{|(x,y)| \to +\infty} -x^2 - y^2 + e^{x^2+y^2}
\]

Passando alle coordinate polari e ponendo \(\rho = \sqrt{x^2 + y^2} \)
\[
\lim_{\rho \to +\infty} f(x,y) \geq \lim_{\rho \to +\infty} -\rho^2 + e^{\rho^2} = +\infty
\]

allora il minimo esiste, e siccome l’unico punto critico trovato è l’origine, allora \((0,0)\) è un punto di minimo assoluto.

Ricordare che:

Teorema 3.2

Una funzione \(f \) continua e tale che
\[
\lim_{|x,y| \to +\infty} f(x,y) = +\infty
\]

ha un minimo, invece una funzione \(f \) continua tale che
\[
\lim_{|(x,y)| \to +\infty} f(x,y) = -\infty
\]
ha un massimo

Punti critici in un compatto: Consideriamo ora la palla $B_{O,R}$.

L’esistenza del massimo e minimo è assicurata dal teorema di Weierstrass. Studiamo i punti critici interni e poi analizziamo la funzione sul bordo. L’unico punto critico nell’interno è l’origine. Sappiamo che

$$f(x, y) \geq f(0, 0) = 1 \forall (x, y) \in \mathbb{R}^2$$

perché l’origine è punto di minimo assoluto per f su \mathbb{R}^2, allora questa relazione vale anche nella palla chiusa centrata nell’origine e di raggio R. 1 è il minimo di f nella palla.

Studio la funzione sul bordo della palla.

Parametrizziamo la circonferenza

$$d_B(r_0) = \{(x, y) \in \mathbb{R}^2, c.x^2 + y^2 = r^2\}$$

allora

$$x = r \cos t, \quad y = r \sin t, \quad t \in [0, 2\pi]$$

Consideriamo

$$f((r \cos t, r \sin t)) = g(t) = r^2 + (\cos^2 t - \sin^2 t) + e^{r^2} = r^2 \cos(2t) + e^{r^2}$$

Studio la derivata:

$$g'(t) = -2r^2 \sin(2t)$$

$$-2r^2 \sin(2t) \geq 0$$

$$2r^2 \sin(2t) \leq 0$$

$$\sin(2t) = 0$$

$$2t = k\pi, k \in \mathbb{Z}, \quad \rightarrow \quad t = k\pi/2, k \in \mathbb{Z}$$

Siccome $t \in [0, 2\pi]$ le soluzioni sono $t = 0, t = \pi/2, t = \pi, t = 3\pi/2, t = 2\pi$, e studio il segno della derivata:

- decresce per $0 < t < \pi/2$
- $\pi/2$ punto di minimo
- cresce per $\pi/2 < t < \pi$
- π punto di massimo
- decresce per $\pi < t < 3\pi/2$
- $3\pi/2$ punto di minimo
- cresce per $3\pi/2 < t < 2\pi$

So già che il minimo assoluto è l’origine, allora considero solo i punti di massimo e verifico in quale di questi punti la funzione assume il valore maggiore.
$g(0) = g(\pi) = r^2 + e^{r^2}$
e questo è il valore massimo della funzione.

Esercizio 3.9

Si determinino i punti di massimo e di minimo locale e globale della funzione $f : \mathbb{R}^2 \to \mathbb{R}$ definita come

$$f(x, y) = e^{9x} e^{9y} - 2(x + y).$$

Riscrivo la funzione come:

$$f(x, y) = e^{9(x+y)} - 2(x + y)$$

Questa funzione è della forma:

$$h(g(x, y))$$

con $h(t) : \mathbb{R} \to \mathbb{R}$ tale che $h(t) = e^{9t} - 2t$ e $g(x, y) : \mathbb{R}^2 \to \mathbb{R}$ tale che $g(x, y) = x + y$. Allora cerco i punti di massimo e minimo di h.

$$h'(t) = 9e^{9t} - 2$$

$$9e^{9t} \geq 2$$

$$\log e^{9t} \geq \log 2/9$$

$$9t \geq \log 2/9$$

$$t \geq 1/9 * \log 2/9$$

Allora $t = 1/9 \log 2/9$ è un punto di minimo per $h(t)$, mentre $h(t)$ non ha punti di massimo. Sostituendo $t = x + y$ si ottiene che tutti i punti di minimo della funzione data devono soddisfare l’equazione:

$$x + y = 1/9 * \log 2/9$$

allora i punti di minimo sono della forma

$$P(h, 1/9 * \log 2/9 - h)$$

$$\lim_{t \to -\infty} e^{9t} - 2t = -\infty$$

quindi i punti di minimo trovati sono punti di minimo locale e la funzione non ha punti di minimo globali.

Esercizio 3.10

Si determinino i punti di massimo e di minimo
(locale e globale) della funzione

\[f(x, y) = y^2(x^2 + y^2 - 2x) \]

sull’insieme \(D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 4, x^2 + y^2 - 2x - 2y \leq 0, y \geq 0\} \).

Studio dell’insieme: Cerco i punti di intersezione tra le due circonferenze che compaiono nella definizione dell’insieme.

\[
\begin{cases}
 x^2 + y^2 = 4 \\
 x^2 + y^2 - 2x - 2y = 0 \\
 x^2 = 4 - y^2 \\
 4 - y^2 + y^2 - 2x - 2y = 0
\end{cases}
\]

Dalla seconda equazione ricavo \(x = 2 - y \), e risostituendo nella prima:

\[
\begin{align*}
 (2 - y)^2 + y^2 & = 4 \\
 4 + y^2 - 4y + y^2 & = 4 \\
 2y^2 & = 4y, \quad \rightarrow, \quad y = 2, \quad y = 0
\end{align*}
\]

Allora trovo i punti di intersezione \(A(0, 2) \) e \(B(2, 0) \).

I punti dell’insieme devono stare contemporaneamente all’interno delle due circonferenze, e sopra l’asse \(x \). Quindi \(D \) ha tre componenti:

1. l’asse \(x \) tra i punti \((0, 0)\) e \((2, 0)\)
2. un arco della circonferenza \(\{x^2 + y^2 = 4\} \) tra \((2, 0)\) e \((0, 2)\)
3. un arco della circonferenza \(\{x^2 + y^2 - 2x - 2y = 0\} \) che congiunge \((0, 2)\) e \((0, 0)\).

Studio prima la funzione all’interno dell’insieme:

\[
f_x = y^2 \ast (2x - 2) \\
f_y = 2y^3 + 2y \ast (x^2 + y^2 - 2x) = 4y^3 + 2yx^2 - 4xy = y(4y^2 + 2x^2 - 4x)
\]

Per determinare i punti critici risolvo il sistema:

\[
\begin{cases}
 y^2 \ast (2x - 2) = 0 \\
 y(4y^2 + 2x^2 - 4x) = 0
\end{cases}
\]

Se \(y = 0 \), i punti che trovo stanno sulla frontiera dell’insieme e li studio in seguito.

Allora suppongo \(y \neq 0 \) e divido le equazioni per \(y \):

\[
\begin{cases}
 2x - 2 = 0 \\
 4y^2 + 2x^2 - 4x = 0
\end{cases}
\]
Allora dalla prima ricavo \(x = 1 \), e quindi dalla seconda ottenGO \(y = \pm 1/2 \) ed entrambi i punti trovati, \(P_{1,2} = (0, \pm 1/2) \) appartengono a \(D \).

Applico a questi punti il criterio dell’hessiana:

\[
\frac{\partial^2 f}{\partial^2 x} = 2y^2 \\
\frac{\partial^2 f}{\partial^2 y} = 12y^2 + 2x^2 - 4x \\
\frac{\partial^2 f}{\partial x \partial y} = 2y(2x - 2)
\]

\[
H_f(0, 1/2) = \begin{pmatrix} 1/2 & -1 \\ -1 & 3 \end{pmatrix}
\]

\[
\text{det } H_1 = 1/2 > 0, \text{ det } H_2 = 3/2 + 1 > 0
\]

quindi \(P_1 \) è un punto di minimo e vale lo stesso per \(P_2 \).

Studio i punti critici sul bordo dell’insieme:

1. Tra i punti \((0, 0) \) e \((2, 0) \), i punti del bordo sono della forma \((h, 0) \) e posso definire la funzione in una variabile \(f(t) = 0 \), che è costante e non ha punti di massimo o minimo.

2. Tra \((2, 0) \) e \((0, 2) \), le componenti del bordo sono della forma \((h, \pm \sqrt{4-h^2}) \)

e definisco la funzione in una variabile:

\[
g(h) = (4 - h^2)(h^2 + 4 - h^2 - 2h) = (4 - h^2)(4 - 2h)
\]

\[
g'(h) = (4 - h^2) * (-2) + (4 - 2h) * (-2h)
\]

\[
g'(h) = -8 + 2h^2 - 8h + 4h^2 = 6h^2 - 8h - 8 = 0
\]

\[
3h^2 - 4h - 4 \geq 0
\]

\[
h_{1,2} = \frac{4 \pm \sqrt{16 + 48}}{6}
\]

\[
h_{1/2} = \frac{4 \pm 8}{6} =
\]

\[
h_1 = 2
\]

\[
h_2 = -2/3
\]

Allora \(P_3 = (2, 0) \) potrebbe essere un punto di massimo, mentre \(P_4 = (-2/3, 4/3\sqrt{2}) \) potrebbe essere punto di mini

3. Tra \((0, 2) \) e \((0, 0) \) i punti del bordo sono della forma: \((1 + \sqrt{2} \cos \theta, 1 + \sqrt{2} \sin \theta) \) con \(\pi/2 < \theta < \pi \)

\[
g(\theta) = (1 + \sqrt{2} \sin \theta)^2 (1 + 2 \cos^2 \theta + 2\sqrt{2} \cos \theta + 1 + 2 \sin^2 \theta - 2\sqrt{2} \sin \theta - 2 - 2\sqrt{2} \cos \theta))
\]

\[
g(\theta) = (1 + \sqrt{2} \sin \theta)^2 (2 - 2\sqrt{2} \sin \theta)
\]

\[
g(\theta) = 2(1 - \sqrt{2} \sin \theta)(1 + \sqrt{2} \sin \theta)^2
\]
$g'(\theta) = 0$

$(1 - \sqrt{2} \sin \theta) * 2 * (1 + \sqrt{2} \sin \theta) * \sqrt{2} \cos \theta - (1 + \sqrt{2} \sin \theta)^2 * \sqrt{2} \cos \theta = 0$

$(1 - 2 \sin^2 \theta) * 2 \sqrt{2} \cos \theta - (1 + 2 \sin^2 \theta + 2 \sqrt{2} \sin \theta) * \sqrt{2} \cos \theta = 0$

$2 \sqrt{2} \cos \theta - 2 \sin^2 \theta * 2 \sqrt{2} \cos \theta - \sqrt{2} \cos \theta - 2 \sqrt{2} \sin^2 \theta \cos \theta - 4 \sin \theta \cos \theta = 0$

$\sqrt{2} \cos \theta - 6 \sqrt{2} \sin^2 \theta \cos \theta - 4 \sin \theta \cos \theta = 0$

Osservo che, se $\cos \theta = 0$ il gradiente si annulla, quindi possibili punti di massimo o minimo sono quelli della forma $P_k = (1, 1 + \sqrt{2})$. Dividendo per $\cos \theta$:

$6 \sqrt{2} \sin^2 \theta + 4 \sin \theta - \sqrt{2} = 0$

$x_{1,2} = \frac{-4 \pm \sqrt{16 + 48}}{12 \sqrt{2}}$

$x_{1,2} = \frac{-4 \pm 8}{12 \sqrt{2}}$

$x_1 = \frac{-4 - 8}{12 \sqrt{2}} = -\sqrt{2}/2$

$\sin \theta = -\sqrt{2}/2$, non rientrano nell’arco di circonferenza considerato

$x_2 = \frac{1}{3 \sqrt{2}}$

$\sin \theta = \frac{1}{3 \sqrt{2}}, \quad \cos \theta = -\sqrt{1 - 1/18} = -\sqrt{17/18}$

Tra i punti che annullano il gradiente considero quindi anche $(1 + \sqrt{2} \frac{1}{3 \sqrt{2}}, 1 - \sqrt{2} \sqrt{17/18}) = (4/3, 1 - \sqrt{17}/3)$.

Valuto f nei possibili punti critici trovati:

$f(0, 0) == 0$

$f(0, 2) = 4 * 4 = 16$

$f(2, 0) = 0$

$f(1, 1/2) = f(1, -1/2) = 1/4(1 + 1/4 - 2) = -3/16$

$f(-2/3, 4/3 \sqrt{2}) = 32/9 * (4/9 + 32/9 + 4/3) = 48 * 32/81 = 18.9$

$f(4/3, 1 - \sqrt{17}/3) = (1 - \sqrt{17})^2 / 9(16/9 + (1 - \sqrt{17})/9 - 8/3) = -1.3$

Allora il massimo della funzione è 18.9 e il minimo è −1.3.
Capitolo 4

Equazioni differenziali

4.1 Equazioni differenziali di primo ordine

Consideriamo equazioni del primo ordine del tipo

\[y'(t) = f(t, y(t)) \]

dove \(f \) è una funzione in più variabili, e la funzione \(y \) è l’incognita.

4.1.1 Equazioni a variabili separabili

Si definisce equazione a variabili separabili un’equazione del tipo:

\[y'(t) = f(t) \cdot g(y) \]

con \(f, g \) funzioni continue in opportuni intervalli di \(\mathbb{R} \).

Se \(g(y) = 0 \) allora la funzione \(y(t) = \bar{y} \forall t \) è una soluzione definita su tutto \(\mathbb{R} \).

Tutte le altre soluzioni si ricavano mediante la formula:

\[\int \frac{1}{g(y)} \, dy = \int f(t) \, dt + C \]

che si ricava scrivendo:

\[y' = \frac{dy}{dt} = f(t)g(y) \]

\[\frac{dy}{g(y)} = f(t)dt \]

e si integrano entrambi i membri.

Esercizio 4.1

Risolvere l’equazione a variabili separabili:
\[y'(t) = \frac{e^{2t}}{1 + e^{2t}} \cdot y(t) \]

\[f(t) = \frac{e^{2t}}{1 + e^{2t}} \]

\[g(y) = y \]

e e = 0 \text{ è una soluzione per l’equazione su tutto } \mathbb{R} .

Se \(y \neq 0 \)

\[\frac{dy}{y} = \frac{e^{2t}}{1 + e^{2t}} dt \]

\[\log |y| = \int \frac{e^{2t}}{1 + e^{2t}} dt = \frac{1}{2} \log |1 + e^{2t}| + C \]

\[\log y = \log \sqrt{1 + e^{2t}} + \log e^C \]

\[\log y = \log[C \sqrt{1 + e^{2t}}] \]

\(C \in \mathbb{R} , \) allora \(e^C \) è un generico numero reale positivo. Pongo \(e^C = c_1 > 0 \)

\[\log |y(t)| = \log[C_1 \sqrt{1 + e^{2t}}] \]

\[|y(t)| = c_1 \sqrt{1 + e^{2t}}, \quad c_1 > 0 \]

\[y(t) = \pm c_1 \sqrt{1 + e^{2t}}, \quad c_1 > 0 \]

\[y(t) = c_2 \sqrt{1 + e^{2t}}, \quad c_2 \in \mathbb{R} \]

Prendendo \(c_2 \in \mathbb{R} \) ho scritto tutte le possibili soluzioni con un’unica scrittura, compresa quella costantemente nulla.

4.1.2 Equazioni del tipo \(y'(t) = f(at + by) \)

Considero un’equazione della forma:

\[y'(t) = f(at + by), a, b \in \mathbb{R} \]

Pongo \(at + by(t) = k(t) \).

\[u'(t) = a + by'(t) \]

ma

\[y'(t) = f(at + by) \]

quindi

\[k'(t) = a + b \cdot [f(at + by(t))] = a + b \cdot f(k(t)) \]
In questo modo ho ottenuto l’equazione

\[k'(t) = a + b \cdot f(k(t)) \]

a variabili separabili e si risolve con il procedimento di prima.

Esercizio 4.2

Risolvere l’equazione:

\[y'(t) = (x + y)^2. \]

Pongo \(k(x) = x + y(x) \).

\[k'(x) = 1 + y'(x) = 1 + (x + y)^2 = 1 + k^2 \]

\[k' = 1 + k^2 \]

\[\frac{dk}{dx} = 1 + k^2 \]

\[\frac{dk}{1 + k^2} = dx \]

\[\arctan k(x) = x + C, \ C \in \mathbb{R} \]

e invertendo l’equazione:

\[k(x) = \tan(x + C) \]

\[y(x) = k(x) - x = \tan(x + C) - x. \]

4.1.3 Equazioni omogenee

Consideriamo equazioni della forma:

\[y'(x) = f(y/x) \]

Pongo \(g(x, y) = f(y/x) \)

Se considero \(g(tx, ty) \) per \(t > 0 \), \(f\left(\frac{ty}{tx}\right) = f\left(\frac{y}{x}\right) \) e questo vale per ogni \(t \), per questo le equazioni di questo tipo si chiamano omogenee.

Pongo \(u(x) = \frac{y(x)}{x} \) per \(x \neq 0 \), quindi \(y(x) = xu(x) \).

\[y'(x) = x \cdot u'(x) + u(x) \text{ espressione 1} \]

\[y'(x) = f\left(\frac{y}{x}\right) = f(u(x)) \text{ espressione 2} \]

ed eguagliando le due espressioni si ottiene:

\[f(u(x)) = x \cdot u'(x) + u(x) \]
che è di nuovo un’equazione a variabili separabili.

Esercizio 4.3

Risolvere l’equazione omogenea

\[y' = e^{y/x} + y/x. \]

In questo caso \(u(x) = y(x)/x \) e ragionando come sopra ottengo:

\[x * u(x) = y(x) \]
\[y'(x) = x * u'(x) + u(x) \]

ed eguagliando le due espressioni di \(y' \):

\[xu'(x) + u(x) = e^{u(x)} + u(x) \]
\[xu'(x) = e^{u(x)} \]

Divido per \(x \):

\[u'(x) = \frac{e^{u(x)}}{x} \]
\[\frac{du}{e^u} = \frac{dx}{x} \]

\[\int e^{-u} du = \int \frac{1}{x} dx + C \]
\[-e^{-u(x)} = \log |x| + C \]

Se \(u \) è una soluzione dell’equazione:

\[C = \log e^C, \ C \in \mathbb{R} = \log \bar{C}, \]
\[\log |x| + \log \bar{c} = -e^{-u(x)} \]
\[e^{-u(x)} = -\log \bar{c} - \log |x| = -\log(\bar{c}|x|) \]
\[e^{u(x)} = -\log\left(\frac{1}{\bar{c}|x|}\right), \ \bar{c} > 0 \]

e applicando il logaritmo ad ambo i membri ottengo:

\[u(x) = -\log \frac{1}{\bar{c}|x|} \]
\[u(x) = -\log \frac{1}{\bar{c}|x|}, \ \bar{c} > 0 \]
\[y(x) = -x \log \frac{1}{\bar{c}|x|}, \ \bar{c} > 0 \]
4.1.4 Equazioni lineari

Un’equazione differenziale lineare è un’equazione della forma:

\[y'(t) = a(t) * y(t) + b(t), \quad a, b \text{continue} \]

e le equazioni di questo tipo si risolvono con la formula:

\[y(t) = e^{\int a(t) \, dt} \left[\int [b(t) * e^{-\int a(t) \, dt}] \, dt + C \right] \]

Riscrivo l’equazione come:

\[y'(t) - a(t)y(t) = b(t) \]

Moltiplico entrambi i membri per una funzione \(\mu(t) \) in modo che

\[\mu(t) * y'(t) - a(t) * \mu(t) * y(t) = \frac{d}{dt}(\mu(t) * y(t)) \]

Se scelgo \(\mu(t) = e^{-\int a(t) \, dt} \) ottengo:

\[y'(t) * e^{-\int a(t) \, dt} - a(t) * e^{-\int a(t) \, dt} * y(t) = \frac{d}{dt} \left[y(t) * e^{-\int a(t) \, dt} \right] \]

cioè al secondo membro ho la derivata di una funzione che dipende solo da \(t \).

Eguagliando al secondo membro dell’equazione originaria ottengo:

\[\frac{d}{dt} \left[y(t) * e^{-\int a(t) \, dt} \right] = b(t) * e^{-\int a(t) \, dt} \]

e integrando entrambi i membri in \(dt \) ottengo:

\[y(t) = e^{\int a(t) \, dt} \int [b(t) * e^{-\int a(t) \, dt}] \, dt \]

\[y(t) = e^{\int a(t) \, dt} [b(t) * e^{-\int a(t) \, dt} + C] \]

Esercizio 4.4

Risolvere l’equazione lineare:

\[xy'(x) = y(x) + x^2 \]

Quest’equazione non è data in forma normale, ed è del tipo:

\[f(x, y, y') = 0 \]

La scrivo in forma normale dividendo per \(x \):

\[y'(x) = \frac{y(x)}{x} + x \]

e l’equazione di partenza è equivalente all’equazione in forma normale quando \(x \neq 0 \).

\[a(x) = \frac{1}{x}, \ b(x) = x \]

e la risolvo separatamente se \(x > 0 \) o \(x < 0 \).

\[y'(x) - \frac{y(x)}{x} = x \]

Moltiplico per \(e^{-\int a(x) \, dx} = e^{-\int \frac{1}{x} \, dx} \).

\[
\frac{d}{dx} \left[e^{-\int \frac{1}{x} \, dx} \ast y(x) \right] = x \ast e^{-\int \frac{1}{x} \, dx} \\
e^{\int \frac{1}{x} \, dx} \ast y(x) = \int x \ast e^{-\int \frac{1}{x} \, dx} + C \\
e^{-\log|x|} \ast y(x) = \int x \ast e^{-\log|x|} \, dx + C \\
e^{\log \frac{1}{|x|}} \ast y(x) = \frac{1}{|x|} \ast y(x) = \int x \, dx + C \\
y(x) = |x| \ast (|x| + C) = x^2 + C \ast |x|, \ C \in \mathbb{R} \\
C|x| = C \ast \text{sgn} \ast x = \pm C \ast x = C_1 \ast x, C_1 \in \mathbb{R}
\]

Se \(y \) è una soluzione di

\[y'(x) = \frac{y(x)}{x} + x \]

allora è definita come

\[
y(x) = \begin{cases}
 x^2 + c_1 x & \text{se } x > 0 \\
x^2 + c_2 x & \text{se } x < 0 \\
0 & \text{se } x = 0
\end{cases}
\]

Si richiede che \(y \) sia di classe \(C^1 \) su tutto \(\mathbb{R} \).

\(y \) è di classe \(C^1 \) per definizione

\[y'(x) = 2x + c_1, x > 0 \\
y'(x) = 2x + c_2, x < 0 \]

Per avere la differenziabilità dev’essere:

\[\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) \]
e questo avviene se e solo se $c_1 = c_2$, quindi le soluzioni di

$$xy'(x) = y(x) + x^2$$

definite su tutto \mathbb{R} sono date da $y(x) = x^2 + Cx, C \in \mathbb{R}$.

4.1.5 Equazioni di Bernoulli

Consideriamo un’equazione del tipo:

$$y'(x) = a(x) * y(x) + b(x) * y^\alpha(x), \alpha \geq 0$$

Se $\alpha = 0$ ho un’equazione lineare, che si riconduce al caso precedente, mentre per $\alpha = 1$ ho equazioni lineari omogenee.

Se $\alpha \neq 0, \alpha \neq 1$ pongo

$$z(x) = y(x)^{1-\alpha}$$

Allora $y = 0$ è sempre soluzione tranne quando $\alpha = 0$.

$$z(x) = y(x)^{1-\alpha} \rightarrow z'(x) = (1-\alpha)*y(x)^{-\alpha}*y'(x) = (1-\alpha)*y(x)^{-\alpha}*(a(x)*y(x)+b(x)*y^\alpha)$$

$$z'(x) = (1 - \alpha) * y(x)^{1-\alpha} * (a(x) + b(x) * y^{\alpha-1}(x))$$

$$z'(x) = (1 - \alpha) * z(x) * [a(x) + \frac{b(x)}{z(x)}]$$

$$z'(x) = (1 - \alpha) * [a(x) * z(x) + b(x)]$$

e ho ottenuto nuovamente un’equazione lineare. Allora risolvo quindi l’equazione in z e poi risalgo a y.

Esercizio 4.5

Risolvere l’equazione di Bernoulli:

$$xy'(x) - 2y(x) + 3xy^2(x) = 0$$

Quest’equazione non è data in forma normale ed è del tipo

$$f(x, y, y') = 0$$

Posso riscriverla in forma normale, quando $x \neq 0$:

$$y' = 2y/x - 3y^2 \text{ equazione di Bernoulli } \text{con } \alpha = 2$$

$$z(x) = y(x)^{1-\alpha} = y(x)^{-1}$$
$$z'(x) = -y^{-2}y' = -y^{-2} \cdot (2y/x - 3y^2) = -2z/x + 3$$

$$z' + (2/x)z = 3\text{equazione} \ast$$

Devo risolvere un’equazione lineare: moltiplico per $$\mu = e^{-\int b(t) \, dt} = e^{\int 2/x \, dx}$$.

$$\frac{d}{dx}[z(x) \cdot e^{\int 2/x \, dx}] = 3 \cdot e^{\int 2/x \, dx}$$

e integrando ottengo:

$$z(x) \cdot e^{\int 2/x \, dx} = \int 3e^{\int 2/x \, dx} \, dx + C$$

$$z(x) \cdot e^{2 \log |x|} = \int 3e^{2 \log |x|} \, dx + C$$

$$z(x) \cdot e^{\log x^2} = \int 3e^{\log x^2} \, dx + C$$

$$z(x) \cdot x^2 = \int 3x^2 \, dx + C$$

$$z(x) = \frac{1}{x^2} \cdot x^3 + C \cdot \frac{1}{x^2} = x + C \cdot \frac{1}{x^2}$$

$$z(x) = \frac{1}{y(x)} = \frac{x^3 + C}{x^2}$$

$$y(x) = \frac{x^2}{x^3 + C}$$

Se $$y$$ è una soluzione dell’equazione $$\ast$$, allora $$y(x)$$ è definita come

$$y(x) = \begin{cases} \frac{x^2}{x^3 + c_1} & \text{se } x > 0 \\ \frac{x^2}{x^3 + c_2} & \text{se } x < 0 \end{cases}$$

Se $$x = 0$$, l’equazione originaria è soddisfatta se $$y(0) = 0$$ e quindi la soluzione si può ridefinire come:

$$y(x) = \begin{cases} \frac{x^2}{x^3 + c_1} & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ \frac{x^2}{x^3 + c_2} & \text{se } x < 0 \end{cases}$$

ed è continua su tutto $$\mathbb{R}$$ per ogni $$c_1, c_2$$ diversi da 0.

Verifichiamo se la soluzione è differenziabile su tutto $$\mathbb{R}$$ e se bisogna imporre ipotesi su $$c_1$$ e $$c_2$$.

$$y'(x) = \frac{2x(x^3 + c_1) - 3x^4}{(x^3 + c_1)^2}$$

$$y'(x) = \frac{-x^4 + 2xc_1}{(x^3 + c_1)^2}$$
e

\[\lim_{x \to 0} y'(x^+) = 0 \]

Se \(c_1, c_2 \neq 0 \), la definita anche in \(x = 0 \); per \(x > 0 \) la derivata è definita per tutti i punti tali che \(x^3 \neq -c_2 \), e quindi è definita per \(c_1 > 0 \), perché se \(c_1 > 0 \), non esiste nessun \(x \) tale che \(x = -\sqrt[3]{c_1} \) che annulli il denominatore. Analogamente, se \(x < 0 \), la soluzione non è definita se \(c_2 > 0 \).

Allora, la soluzione dell’equazione differenziale si riscrive come:

\[y(x) = \begin{cases} \frac{x^2}{x^3 + c_1} & \text{se } x > 0, c_1 > 0 \\ 0 & \text{se } x = 0 \\ \frac{x^2}{x^3 + c_2} & \text{se } x < 0, c_2 < 0 \end{cases} \]

Esercizio 4.6

Calcolare le soluzioni dell’equazione

\[y' = 2y + ae^x, \; a \in \mathbb{R} \]

Servendosi del risultato, trovare tutte le soluzioni del sistema

\[
\begin{aligned}
&y_1' = y_1 \\
y_2' = -y_1 + 2y_2 \\
y_3' = y_1 + 2y_3
\end{aligned}
\]

L’equazione

\[y' = 2y + ae^x, \; a \in \mathbb{R} \]

è lineare.

\[
\frac{d}{dx} \left[y \cdot e^{-\int 2 \, dx} \right] = a \cdot e^x \cdot e^{-\int 2 \, dx} \\
y \cdot e^{-2x} = \int (a \cdot e^x \cdot e^{-2x}) \, dx + C \\
y \cdot e^{-2x} = -ae^{-x} + C \\
y = e^{2x} \cdot (-ae^{-x} + C') \\
y = -ae^x + Ce^{2x}, \; C \in \mathbb{R}
\]

Considero ora la prima equazione del sistema:

\[
\begin{aligned}
y_1 &= -ae^x + Ce^{2x}, \; C \in \mathbb{R} \\
y_1' &= -a \cdot e^x + 2C \cdot e^{2x} \\
y_1 = y_1' &\rightarrow C \cdot e^{2x} = 0 \rightarrow C = 0
\end{aligned}
\]
Ora sostituisco l’espressione di y_1 nelle altre due equazioni del sistema:

$$y_1 = -a * e^x$$

ed è soluzione dell’equazione di partenza se pongo $C = 0$.

$$\begin{align*}
y_2' &= a * e^x + 2y_2 \\
y_3' &= -a * e^x + 2y_3
\end{align*}$$

L’equazione

$$y_2' = a * e^x + 2y_2$$

è un’equazione lineare, quindi:

$$y_2' - 2y_2 = a * e^x$$

$$\frac{d}{dx}(y * e^{- \int 2dx}) = a * e^x * e^{- \int 2dx}$$

$$y * e^{- \int 2dx} = \int a * e^x * e^{- \int 2dx} dx + C$$

$$y * e^{-2x} = \int a * e^{-x} dx + C$$

$$y_2 = (-a * e^x + C * e^{2x}), \quad C \in \mathbb{R}$$

Cerco y_3.

$$y_3' - 2y_3 = -a * e^x$$

$$\frac{d}{dx}[y * e^{- \int 2dx}] = -a * e^x * e^{- \int 2dx}$$

$$y * e^{-2x} = \int -a * e^{-x} dx + C$$

$$y_3 = a * e^x + C * e^{2x}$$

4.2 Equazioni differenziali miste

Esercizio 4.7

Si determini la soluzione dell’equazione differenziale

$$y'(x) = -\frac{(1 + y^2(x))^2}{2y(x)}$$

che passa per il punto $(1, 1)$, specificando qual è il suo intervallo massimale di definizione.
Devo trovare la soluzione del problema di Cauchy:

\[
\begin{cases}
 y'(x) = -\frac{(1+y^2(x))^2}{2y(x)} \\
y(1) = 1
\end{cases}
\]

E’ un’equazione a variabili separabili, con \(f(x) = 1 \).

\[
\int \frac{y'(x)2y(x)}{(1+y^2(x))^2} \, dy = - \int dx
\]

\[
\frac{1}{1+y^2(x)} = x + C
\]

\[
y^2(x) = \frac{1}{x+C} - 1
\]

\[
y(x) = \pm \sqrt{\frac{1}{x+C} - 1}
\]

definita per \(x \neq -C \)

\[
y(1) = \pm \sqrt{\frac{1}{1+C} - 1} = 1
\]

\[
\frac{1}{1+c} - 1 = 1
\]

\[
\frac{1-2c}{1-c} = 0
\]

\[
2c = -1
\]

\[
c = -1/2
\]

\[
y(x) = \sqrt{\frac{1}{x-1/2} - 1}
\]

Intervallo massimale di esistenza:

\[
c.e.x \neq 1/2
\]

\[
\frac{1}{x-1/2} - 1 \geq 0
\]

\[
\frac{1-x+1/2}{x-1/2} \geq 0
\]

\[
3/2 - x \geq 0
\]

\[
x \leq 3/2
\]

\[
1/2 \leq x \leq 3/2
\]
Esercizio 4.8

Si determini la soluzione dell’equazione differenziale

\[y'(x) = 1 - (y(x) - x)(y(x) - x - 2) \]

trovando che passa per il punto (0, 1), specificando qual è il suo intervallo massimale di definizione.

\[y'(x) = 1 - (y(x) - x)[(y(x) - x) - 2] \]
\[y'(x) - 1 = -(y(x) - x)^2 + 2(y(x) - x) \]

Pongo \(K = y(x) - x \), quindi

\[K' = y'(x) - 1 = -K^2 + 2K \]
\[K' = -K^2 + 2K \]

Quest’equazione ha le soluzioni costanti:

\[K = 0 \rightarrow y(x) = x \]
\[-K + 2 = 0 \rightarrow -y(x) + x + 2 = 0 \rightarrow y(x) = x + 2 \]

Per \(K \neq 0, K \neq 2 \) otteniamo:

\[\frac{dK}{dx} = -K^2 + 2K \]
\[\frac{dK}{-K^2 + 2K} = dx \]
\[\int \frac{dK}{-K^2 + 2K} = \int dx \]

Voglio scrivere l’integranda come combinazione lineare di frazioni nella forma:

\[\frac{1}{-K^2 + 2K} = \frac{a}{K} + \frac{b}{2-K} \]
\[= \frac{a(2-K) + bK}{2K-K^2} \]
\[= \frac{2a + (b-a)K}{2K-K^2} \]

Eguagliando i coefficienti di primo e ultimo membro:

\[2a = 1 \rightarrow a = -\frac{1}{2} \]
\[b - a = 0 \rightarrow b = a = 1/2 \]

Sostituisco nell’integrale:
\begin{equation}
\frac{1}{2} \int \frac{1}{K} dK + \frac{1}{2} \int \frac{1}{2 - K} dK = \frac{1}{2} \log |K| - \frac{1}{2} \log |2 - K| = x + C
\end{equation}

\begin{equation}
\frac{1}{2} \log \frac{K}{2 - K} = x + C
\end{equation}

\begin{equation}
\log \frac{K}{2 - K} = 2(x + C)
\end{equation}

\begin{equation}
\frac{K}{2 - K} = e^{2(x+C)}
\end{equation}

\begin{equation}
\frac{K}{2 - K} = C' \cdot e^{2x}
\end{equation}

\begin{equation}
K = 2C' \cdot e^{2x} - KC' e^{2x}
\end{equation}

\begin{equation}
(1 + C' e^{2x}) \cdot K = 2C' \cdot e^{2x}
\end{equation}

\begin{equation}
K = \frac{2C' \cdot e^{2x}}{1 + C' \cdot e^{2x}}
\end{equation}

\begin{equation}
y(x) = \frac{2C' \cdot e^{2x}}{1 + C' \cdot e^{2x}} + x
\end{equation}

\begin{equation}
y(0) = \frac{2C'}{1 + C'} = 1
\end{equation}

\begin{equation}
2C' = 1 + C'
\end{equation}

\begin{equation}
C' = 1
\end{equation}

Soluzione del problema di Cauchy:

\begin{equation}
y(x) = \frac{e^{2x}}{1 + e^{2x}} + x
\end{equation}

\begin{equation}
1 + e^{2x} \neq 0
\end{equation}

\begin{equation}
e^{2x} \neq -1 \forall x \in \mathbb{R}
\end{equation}

allora il dominio massimale di esistenza coincide con \(\mathbb{R} \).

Esercizio 4.9

Al variare di \(\alpha \in \mathbb{R} \), si risolva il seguente problema di Cauchy, determinando, per ogni \(\alpha \), l’intervallo massimale di esistenza della soluzione:

\begin{equation}
\begin{cases}
y'(x) = ey(x)(x-1), \\
y(0) = \alpha.
\end{cases}
\end{equation}

L’equazione è a variabili separabili e non ammette soluzioni costanti. La funzione \(f = (x - 1) \cdot e^{y} \) è continua e localmente lipschitziana, quindi si ha esistenza e unicità locale della soluzione. Per \(x < 1 \) le soluzioni sono decrescenti, mentre per \(x > 1 \) sono crescenti.
dy
\frac{e^y}{(x-1)} dx \\
\int \frac{dy}{e^y} = \int (x-1) \, dx \\
\text{Calcolo} \\
\int \frac{1}{e^y} dy = \\
\int e^y \frac{dy}{(e^y)^2} = \\
Pongo t = e^y , quindi dt = e^y dy , \\
\int \frac{1}{t^2} dt = -1/t = -\frac{1}{e^y} \\
e tornando all’equazione differenziale ottengo: \\
-\frac{1}{e^y} = x^2/2 - x + C \\
Per x^2/2 - x + C \neq 0 \\
-e^y = \frac{1}{x^2/2 - x + C} \\
y = \log\left(-\frac{1}{x^2/2 - x + C}\right) \\
e la soluzione è definita se e solo se \\
x^2/2 - x + C < 0 \\
Per risolvere il problema di Cauchy: \\
y(0) = \alpha = \log\left(-\frac{1}{C}\right) \\
\alpha = \log(-1/C) \\
e^\alpha = -1/C \\
C = -\frac{1}{e^\alpha} \\
Le soluzioni sono definite per: \\
x^2/2 - x - \frac{1}{e^\alpha} < 0 \\
Per \alpha = 0 ,
\[x^2 - 2x - 2 < 0 \]
\[x_{1,2} = \frac{4 \pm \sqrt{4+8}}{2} \]
\[x_{1,2} = 2 \pm \sqrt{3} \]

quindi per \(\alpha = 0 \) l’intervallo di esistenza massimale della soluzione è \((2 - \sqrt{3}, 2 + \sqrt{3})\).

In generale, l’equazione di secondo grado ha delta:
\[\delta = 1 - 2 \frac{1}{e^{\alpha}} \]
e si ha \(\delta \geq 0 \) se e solo se
\[1 - 2 \frac{1}{e^{\alpha}} \geq 0 \]
\[e^{\alpha} - 2 \geq 0 \]
\[e^{\alpha} \geq 2 \]
\[\alpha \geq \log 2 \]

In particolare, l’intervallo massimale di esistenza si riduce al crescere di \(\alpha \) nell’intervallo \(0 < \alpha < \log 2 \), e si riduce ad un solo punto per \(\alpha = \log 2 \). Per \(\alpha > \log 2 \) la soluzione non esiste.

Esercizio 4.10

Si determinini l’integrale generale dell’equazione differenziale
\[y'(x) + (\sin x)y(x) = 2\sin(x). \]

Esistono soluzioni illimitate dell’equazione?

\[y'(x) + (\sin x)y(x) = 2\sin(x) \]

Questa è un’equazione lineare con \(a(x) = \sin x \) e \(b(x) = \sin(2x) \), quindi applico la formula:
\[y(x) = e^{-\int \sin x \, dx} \left[\int e^{\int \sin x \, dx} 2\sin x \, dx \right] \]
\[y(x) = e^{\cos x} \left[\int e^{-\cos x} 2\sin x \, dx \right] \]
\[2 \left[\int \sin x e^{-\cos x} \, dx \right] \]

Risolvendo l’integrale per sostituzione pongo \(-\cos x = t\), quindi \(\sin x \, dx = dt\).
\[
2 \int e^t \, dt = 2e^t = 2e^{-\cos x}
\]
\[
y(x) = e^{\cos x} \ast [2e^{-\cos x} + C] = 2e^{\cos x} \ast e^{-\cos x} + C \ast e^{\cos x} = 2 + C \ast e^{\cos x}
\]
Alternativamente, se risolvo l’equazione separando le variabili ottengo:
\[
\frac{dy}{dx} = -\sin xy(x) + 2 \sin(x)
\]
\[
\frac{dy}{dx} = \sin x \ast [2 - y(x)]
\]
\[
\int \frac{dy}{2 - y} = \int \sin x \, dx
\]
\[
-\log|2 - y| = -\cos x + C
\]
\[
|2 - y| = e^{\cos x + C}
\]
\[
y = 2 - e^{\cos x + C}
\]
e se pongo \(C' = \log C \) ottengo:
\[
y = 2 - C' e^{\cos x}
\]
L’equazione ha come soluzione illimitata la soluzione costante \(y(x) = 2 \).

Esercizio 4.11

Si determini la soluzione dell’equazione differenziale
\[
2 \, t \, y(1 + t) \, y' = 1 + y^2
\]
che verifica la condizione \(y(1) = -1 \), specificando su quale intervallo massimale e’ definita.
\[
2ty(1 + t)y' = 1 + y^2
\]
L’equazione è a variabili separabili. \(1 + y^2 \neq 0 \forall y \), quindi divido per \(1 + y^2 \).
\[
2t \frac{y}{1 + y^2} (1 + t)dy = dt
\]
Per \(t \neq 0, t \neq -1 \) ottengo:
\[
\frac{2y}{1 + y^2}dy = \frac{dt}{t \ast (t + 1)}
\]
\[
\int \frac{2y}{1 + y^2}dy = \int \frac{dt}{t \ast (t + 1)}
\]
\[
\log(1 + y^2) = \int \frac{dt}{t \ast (t + 1)}
\]
Cerco i coefficienti a, b tali che

$$\frac{1}{t \ast (t+1)} = \frac{a}{t} + \frac{b}{t+1}$$

$$= \frac{a(t+1) + bt}{t+1}$$

$$= \frac{(a + b)t + a}{t+1}$$

Quindi $a = 1$, $b = -1$.

$$\int \frac{1}{t \ast (t+1)} \, dt =$$

$$\int \frac{1}{t} \, dt - \int \frac{1}{1+t} \, dt =$$

$$\log |t| - \log |1 + t| = \log \frac{|t|}{|1 + t|}$$

Quindi nell’equazione differenziale si ottiene:

$$\log(1 + y^2) = \log \frac{|t|}{|1 + t|}$$

$$1 + y^2 = \frac{|t|}{|t + 1|}$$

$$y^2 = \frac{|t|}{|t + 1|} - 1 + C$$

La condizione del problema di Cauchy è verificata se

$$-1 = 1/2 - 1 + C$$

$$C = -1/2$$

$$y(t) = \sqrt{\frac{|t|}{|t + 1|} - 3/2}$$

$$y(t) = \sqrt{\frac{|t| - 3/2t - 3/2}{|t + 1|}}$$

$$y(t) = \sqrt{-1/2 \ast \frac{t + 3}{|t + 1|}}$$

Intervallo massimale di esistenza:

$$-3 < t < -1$$
4.3 Esistenza e unicità delle soluzioni

4.3.1 Richiami teorici

Teorema (di esistenza locale)

Sia f una funzione continua, ω un aperto, $(x_0, y_0) \in \omega$ e sia $U_0 \subset \omega$ un intorno che contiene il punto, e sia f lipschitziana, cioè esiste $L > 0$ tale che:

$$|f(x, y_1) - f(x, y_2)| \leq L \cdot |y_1 - y_2| \forall (x, y_1), (x, y_2) \in U_0$$

allora il problema di Cauchy:

$$\begin{cases}
y' = f(x, y) \\
y(x_0) = y_0
\end{cases}$$

ha un’unica soluzione definita nell’intorno del punto x_0

Teorema (di Peano)

considerando il teorema sopra, senza l’ipotesi di locale lipschitzianità, la continuità della funzione garantisce l’esistenza della soluzione.

Teorema (di esistenza e unicità globale)

Sia $s = (a, b) \times \mathbb{R}$ una striscia verticale, e sia $f : s \rightarrow \mathbb{R}$ una funzione che soddisfi su s le ipotesi del teorema di esistenza e unicità locale. Supponiamo che esistano $h, k > 0$ dipendenti da a, b tali che

$$|f(x, y)| \leq h(a, b) + k(a, b)|y| \forall y \in s$$

(la funzione f cresce al più linearmente in y) allora l’unica soluzione di ogni problema di Cauchy

$$\begin{cases}
y' = f(x, y) \\
y(x_0) = y_0
\end{cases}$$

con (x_0, y_0) nella striscia s è definita in tutto (a, b).

Teorema (dell’asintoto)

Sia U una funzione definita da $(x_0, +\infty)$ a valori reali, e supponiamo che U sia derivabile. Supponiamo che esistano

$$\lim_{x \to +\infty} U(x) = L$$
$$\lim_{x \to +\infty} U'(x) = m$$

Se L è un limite finito, allora $m = 0$.

Dimostrazione

Siccome L è finito:

$$0 = \lim_{x \to +\infty} U(x + 1) - U(x)$$

e non c’è forma indeterminata, ma siccome U è derivabile si ha che il limite sopra è anche uguale a

$$\lim_{x \to +\infty} U' \psi(x)$$

con $\psi(x) \in (x, x + 1)$ e se $\psi(x) \to +\infty$ il limite tende a m per ipotesi, quindi $m = 0$.

Esercizio 4.12

Si consideri l’equazione differenziale:

$$y' = x^3 * (e^{2-y^2} - 1)$$

si chiede di tracciare un grafico qualitativo delle soluzioni.

Dobbiamo discutere esistenza e unicità della soluzione e capire come è fatta.

Esistenza e unicità locale

$$y' = f(x, y) = x^3 * (e^{2-y^2} - 1)$$

f è localmente lipschitziana perché è di classe C^1.

Per ogni punto $(x_0, y_0) \in \mathbb{R}^2$ esiste un’unica soluzione locale del problema di Cauchy:

$$\begin{cases}
 y' = f(x, y) \\
 y(x_0) = y_0
\end{cases}$$

Esistenza globale in questo caso le ipotesi del teorema di esistenza globale sono soddisfatte. Infatti consideriamo:

$$|f(x, y)| = |x^3 * (e^{2-y^2} - 1)| = |x^3| * |e^{2-y^2} - 1|$$

e consideriamo una striscia del tipo $(-a, a) \times \mathbb{R}$.

$$-a < x < a \rightarrow -a^3 \leq x^3 \leq a^3$$

$$|f(x, y)| \leq |x^3| * |e^{2-y^2} - 1| \leq a^3 * (e^{2-y^2} + 1) \leq |a^3| * (e^2 + 1)$$

e quindi la funzione f è limitata in ogni striscia del tipo $(-a, a) \times \mathbb{R}$, in particolare esistono $h, k > 0$ tali che

$$|f(x, y)| \leq h + k * |y|$$
con \(h = a^3 \cdot (e^2 + 1) \) e \(k = 0 \), allora per il teorema di esistenza globale la soluzione è definita in tutta la striscia \((-a, a) \times \mathbb{R}\). Posso ripetere il discorso per ogni \(a > 0 \). Prendo la successione \(1, 2, 3, \ldots, n \). Per ogni \(n \) ogni soluzione del problema di Cauchy con dato iniziale nella striscia \((-n, n) \times \mathbb{R}\) è definita in tutto \([-n, n]\). Passo al limite per \(n \to +\infty \) e ricavo esistenza e unicità globale per le soluzioni dei problemi di Cauchy su tutto \(\mathbb{R} \).

Soluzioni costanti Determino le soluzioni costanti del tipo \(y(x) = \bar{y} \forall x \in \mathbb{R} \).

\[
y' = 0
\]
\[
x^3 \cdot (e^{2-\bar{y}^2} - 1) = 0 \forall x \in \mathbb{R}
\]
\[
e^{2-\bar{y}^2} = 1
\]
\[
2 - (\bar{y})^2 = 0
\]
\[
\bar{y} = \pm \sqrt{2}
\]
\[
y(x) = \sqrt{2}, \ y(x) = -\sqrt{2}
\]

Supponiamo di avere una soluzione che in \(x = 0 \) è maggiore di \(\sqrt{2} \), allora per il teorema di esistenza e unicità questa soluzione dev’essere \(< \sqrt{2} \forall x \), altrimenti il problema di Cauchy:

\[
\begin{cases}
y(0) = \sqrt{2} \\
y' = f(x, y)
\end{cases}
\]

non ammetterebbe un’unica soluzione. Quindi il grafico di ogni soluzione sta tutte sopra la retta \(y = \sqrt{2} \), oppure tutto sotto la retta \(y = -\sqrt{2} \), oppure tra le due rette.

Soluzioni non costanti Studio la derivata

\[
x^3 \cdot (e^{-y^2} - 1) > 0
\]

I casi in cui \(y' > 0 \) sono

\[
x^3 > 0, \ \forall e^{-y^2} - 1 > 0
\]

oppure se

\[
x^3 < 0, \ \forall e^{-y^2} - 1 < 0
\]
\[
e^{-y^2} > 1 \rightarrow 2 - y^2 > 0, -\sqrt{2} \leq y \leq \sqrt{2}
\]

Allora \(y'(x) > 0 \) se

\[
x > 0 \lor -\sqrt{2} < y(x) < \sqrt{2}
\]

oppure se

\[
x < 0 \land y(x) < -\sqrt{2} \lor y(x) > \sqrt{2}
\]

Allora le soluzioni non costanti che si trovano tra le due rette sono crescenti per \(x > 0 \), e decrescenti per \(x < 0 \). Se le soluzioni sono sopra o sotto a una delle rette, sono crescenti prima di \(x = 0 \) e decrescenti dopo.
Comportamento asintotico delle soluzioni Siccome tutte le soluzioni sono definite globalmente, considero il valore α che la soluzione assume per $x = 0$. α determina univocamente la soluzione del problema di Cauchy. Considero tre casi:

1. $\alpha \in (-\sqrt{2}, \sqrt{2})$ Chiamiamo y_α la soluzione del problema di Cauchy con $y(0) = y_\alpha$. Esiste:
 \[\lim_{x \to \pm \infty} f(x, y) = L^\pm \]
 $|L|^\pm$ è finito, perché $\alpha \in (-\sqrt{2}, \sqrt{2})$. Per monotonia, siccome per $x > 0$ la soluzione è crescente, $\alpha < l^+ \leq \sqrt{2}$. Allora si ha $L^+ < \sqrt{2}$ o $L^+ = \sqrt{2}$. Osserviamo che
 \[\lim_{x \to +\infty} y'_\alpha(x) = \lim_{x \to +\infty} x^3 * (e^{2-y^2} - 1) = \]
 e il limite di questa quantità deve valere 0 perché la funzione ha un asintoto orizzontale.
 \[0 = \lim_{x \to +\infty} x^3 * (e^{2-ly^2} - 1) = \]
 e quanta condizione necessaria affinché questo limite valga 0 è che
 \[e^{2-(L^+)^2} - 1 \to 0 \]
 Allora tutte le soluzioni con $-\sqrt{2} < \alpha < \sqrt{2}$ tendono a $\sqrt{2}$ per $\alpha \to +\infty$, e analogamente, per $\alpha < 0$, la funzione è decrescente e c'è un asintoto orizzontale per $x = \sqrt{2}$.

2. Nel caso in cui $\alpha > \sqrt{2}$, esistono
 \[\lim_{x \to +\infty} y_\alpha(x) = L^\pm \]
 Per monotonia:
 \[\alpha > l^+ \geq \sqrt{2} \]
 $|L^+|$ è finito, e per il teorema dell’asintoto:
 \[0 = \lim_{x \to +\infty} x^3 * (e^{2-y(x)^2} - 1) = 0 \]
 e questo avviene se e solo se
 \[e^{2-(l^+)^2} - 1 = 0 \]
 e quindi $l^+ = \sqrt{2}$.

3. Se $\alpha < -\sqrt{2}$ si ha per monotonia della soluzione:
 \[\alpha > L^+ \]
 Supponiamo che l^+ sia finito (in questo caso potrebbe essere anche $-\infty$). Allora y_α ha un asintoto orizzontale.
 \[y'_\alpha(x) \to 0 \iff x \to +\infty \to l^+ = \pm \sqrt{2} \]
 (si ragiona come prima) e siccome $\alpha > L^+$, $\alpha < -\sqrt{2}$, si ha $L^+ = -\sqrt{2} < \alpha < -\sqrt{2}$, e questo è un assurdo, allora L^+ non può essere finito, quindi si avrà $l^+ = -\infty$, e allo stesso modo si dimostra che $l^- = -\infty$.
Simmetria delle soluzioni:

Sia $y_0(x)$ l’unica soluzione del problema di Cauchy:

$$\begin{cases}
y' = x^3 \cdot (e^{2-y^2} - 1) \\
y(0) = \alpha
\end{cases}$$

Pongo $W(x) = y(-x)$, allora

$$W'(x) = -y'(-x) = -(x^3 \cdot (e^{2-y^2(-x)} - 1)) = x^3 \cdot (e^{2-W^2} - 1)$$

e $W(0) = y(0) = \alpha$, cioè per esistenza e unicità della soluzione $W(x) = y(x) \forall x \in \mathbb{R}$, e quindi y è pari.

Esercizio 4.13

Si consideri l’equazione:

$$y' = f(x, y) = y^3 \cdot \log(y + 1)$$

Studiare esistenza e unicità locale e globale e tracciare un grafico qualitativo delle soluzioni.

1. **Esistenza e unicità locale**:

 $$D_f = \mathbb{R} \times (-1, +\infty)$$

 In particolare la funzione non è definita su nessuna striscia verticale. f è localmente lipschitziana in y uniformemente in t nel suo dominio, e questo implica che c’è esistenza e unicità locale della soluzione in tutto $\mathbb{R} \times (-1, +\infty)$.

2. **Soluzioni costanti**: Cerco \bar{y} tale che

 $$(\bar{y})^3 \cdot \log(\bar{y} + 1)$$

 e questo è vero se e solo se $\bar{y} = 0$ allora la funzione identicamente nulla è una soluzione costante. Allora per il teorema di esistenza e unicità locale tutte le soluzioni sono di segno costante, perché le soluzioni o stanno sopra l’asse x, o stanno sotto, ma non lo possono intersecare.

3. **Monotonia delle soluzioni**: Studio l’equazione

 $$y' > 0 \rightarrow y^3 \log(y + 1) > 0$$

 e la derivata è maggiore di 0 se i fattori sono entrambi negativi o entrambi positivi, cioè se:

 $$y^3 > 0, \ \land \ \log(y + 1) > 0$$

 oppure

 $$y^3 < 0 \land \log(y + 1) < 0$$

 e quindi la soluzione è sempre monotona crescente, infatti per la prima condizione è crescente quando $y > 0$ e per la seconda quando $y < 0$.
4. Intervalli massimali di definizione della soluzione e comportamento asintotico: Divido due casi: Caso 1: \(y(0) = \alpha > 0 \). Sia \((\tau, T)\) il dominio massimale della soluzione. Per monotonia esiste
\[
\lim_{t \to T} y_{\alpha} = L^+
\]
e ho quattro casi: ##
\[
t < +\infty, \quad L^+ < +\infty
\]
La soluzione parte dal punto \((0, \alpha)\) e arriva ad un punto finito \((T, L^+)\).

Allora si considera il problema di Cauchy:
\[
\begin{cases}
y' = y^3 \log(y + 1) \\
y(T) = L^+
\end{cases}
\]
Per unicità questa soluzione coincide con \(Y_{\alpha} \) a sinistra di \(T \), e ma è prolungabile anche a destra di \(T \), e questo va contro la definizione di \(T \) come sup dell’intervallo di prolungabilità della soluzione. ## L^+ finito e \(T \) infinito Questo significa che la soluzione sarebbe definita globalmente e che c’è un asintoto orizzontale. Allora per il teorema dell’asintoto:
\[
0 = \lim_{t \to +\infty} Y'_{\alpha}(t)
\]
\[
= \lim_{t \to +\infty} y_{\alpha}(t)^3 \log(y_{\alpha}(t) + 1) = (L^+)^3 \log(L^+ + 1) = 0
\]
e questo è possibile se e solo se \(l^+ = 0 \). Ma per monotonia si avrebbe \(L^+ > \alpha > 0 \) e siccome \(L^+ = 0 \) si ha un assurdo, e questo caso non si può verificare. Allora di sicuro \(L^+ = +\infty \). ## L^+ infinito e \(T \) infinito
Per monotonia
\[
y_{\alpha}(t) \geq \alpha \forall t \in (0, T)
\]
allora in particolare
\[
f(t, Y_{\alpha}(t)) \neq 0 \forall t \in (0, T)
\]
Allora posso dividere per \(f(t, y_{\alpha}(t)) \):
\[
\frac{y'_{\alpha}(t)}{y^3_{\alpha}(t) \log(y_{\alpha}(t) + 1)} = 1
\]
Integro la relazione: Prendo \(s \in (0, T) \)
\[
\int_0^s \frac{y'_{\alpha}(t)}{y^3_{\alpha}(t) \log(y_{\alpha}(t) + 1)} dy = s
\]
Allora il tempo \(s \) che la soluzione impiega a passare da 0 a \(s \) è dato dal membro di sinistra. \(y'_{\alpha}(t) > 0 \), pongo \(u = y_{\alpha}(t) \)
\[
du = y'_{\alpha}(t) dt
\]
\[
t = 0 \longrightarrow u = y_{\alpha}(t) = \alpha
\]
\[
t = s \longrightarrow u = y_{\alpha}(s)
\]
\[
s = \int_{\alpha}^{y_{\alpha}(s)} \frac{du}{u^3 \log(u + 1)}, \quad \forall s \in (0, T)
\]
e passo al limite per \(s \to T \). Ottengo:

\[
T = \lim_{s \to T^-} \int_\alpha^{y_a(s)} \frac{du}{u^3 \log(u + 1)}
\]

Questo è un integrale improprio:

\[
\int_\alpha^{+\infty} \frac{du}{u^3 \log(u + 1)}
\]

che converge perché è della forma \(\frac{1}{u^\beta} \) con \(\beta > 1 \). Allora vale necessariamente il caso 4.## \(T \) finito e \(L \) infinito. Analogamente, esiste

\[
L^- = \lim_{t \to \tau^+} y_a(t)
\]

Per monotonia, \(0 \leq L^- \leq \alpha \), quindi \(L^- \) è finito. La soluzione non può attraversare l’asse x, e deve essere minore di \(\alpha \). Si può avere \(\tau = -\infty \) oppure \(\tau > -\infty \). Supponiamo \(\tau > -\infty \). Allora \(L^- = 0 \) oppure \(0 < L^- < \alpha \). Non può essere \(L^- = 0 \) altrimenti si contraddirebbe l’unicità della soluzione del problema di Cauchy, perché questa soluzione intersecherebbe quella costante. Come nel caso precedente si dimostra che non può essere \(\tau > -\infty \) e \(0 < l^- < \alpha \); infatti, se così fosse, il problema di Cauchy:

\[
\begin{align*}
\begin{cases}
y(\tau) = \ell^+ \\
y' = \log(y + 1) \cdot y^3
\end{cases}
\end{align*}
\]

Allora per il teorema di esistenza e unicità la soluzione di questo problema di Cauchy coinciderebbe con \(y_a \), e sarebbe prolungabile anche a sinistra di \(\tau \) e questo è assurdo. Quindi si ha necessariamente \(l^- \) finito, cioè \(0 < l^- < \alpha \) e \(\tau = -\infty \). Possiamo determinare il valore di \(L^- \) con il teorema dell’asintoto

\[
0 = \lim_{t \to -\infty} y^3 \cdot \log(1 + y) = (l^-)^3 \cdot \log(l^- + 1)
\]

e allora necessariamente \(L^- = 0 \) e le soluzioni hanno un asintoto orizzontale e tendono a 0 per \(t \to -\infty \). Studio la concavità:

\[
y'' = 3y^2 \cdot \log(y + 1) \cdot y' + y^3 \cdot \frac{1}{y + 1} \cdot y' \]
\]

\[
y > 0
\]
\[
y' > 0
\]

quindi \(y'' \) è sempre maggiore di 0. Riassumendo, per \(\alpha > 0 \) le soluzioni hanno l’asintoto orizzontale \(y = 0 \) per \(t \to -\infty \), sono strettamente crescenti, passano per il punto \((0, \alpha)\) e tendono a \(+\infty \) per \(t \to +\infty \). Caso 2: Studio le soluzioni per \(-1 < \alpha < 0\). Chiamo \((\tau, T)\) il dominio massimale della soluzione. Come prima si verifica che, per monotonia, \(-1 \leq l^- \leq \alpha \). In ogni caso \(l^- \) è finito. Supponiamo che \(\tau = -\infty \), allora la soluzione ha un asintoto orizzontale.

\[
0 = \lim_{t \to -\infty} y_a'(t) = (l^-)^3 \cdot \log(l^- + 1) \to l^- = 0
\]

ma c’è una contraddizione perché \(l^- < \alpha < 0 \) e \(l^- = 0 \). Quindi si avrà \(\tau \) finito, allora, per il teorema di prolungabilità delle soluzioni, la soluzione deve avvicinarsi al bordo di \(\omega \) e quindi si avrà \(\ell^- = -1 \). Le soluzioni sono concave ed escono dal dominio della funzione. Invece \(\ell^+ = 0 \) e \(\tau = +\infty \).
Esercizio 4.14

Consideriamo il problema di Cauchy

\[
\begin{cases}
 x' = \frac{1}{\sqrt{t+x}} \\
 x(0) = a, a \geq 1
\end{cases}
\]

- Discutere esistenza e unicità locale al variare di \(a \geq 1 \)
- studiare la monotonia delle soluzioni.
- Studiare la convessità delle soluzioni.
- discutere la prolungabilità delle soluzioni e tracciare un grafico qualitativo.

\[
x' = f(t, x)
\]
\[
D_f = \{(t, x) \in \mathbb{R}^2 \text{ c.s.t. } x > -t\}
\]

\(f \) è di classe \(C^\infty \) nel dominio della soluzione, sono soddisfatte le ipotesi del teorema di esistenza e unicità locale per ogni \(a \geq 1 \).

1. Monotonia: Le soluzioni sono tutte monotone crescenti, infatti

\[
x_a'(t) > 0 \forall t \in \mathbb{R}
\]

2. convessità:

\[
x_a' = \frac{1}{\sqrt{t + x_a}}
\]
\[
x_a''(t) = -1/2 * (t + x_a(t))^{-3/2} * (1 + x_a'(t)) < 0 \forall t \in D
\]

Infatti \(x_a'(t) > 0 \), \(1 + x_a'(t) > 0 \). In ogni istante \((t, x_a(t)) \) appartiene al dominio della soluzione. Allora le soluzioni sono concave.

3. Prolungabilità. Chiamo \((\tau, T)\) il dominio massimale della soluzione. Per monotonia esiste

\[
\lim_{t \to T^-} x(t) = L^+
\]
\[
1 \leq a \leq T^+
\]

Il dominio della funzione non contiene nessuna striscia del tipo \((a, b) \times \mathbb{R}\). Allora dobbiamo discutere i quattro casi: \(\neq \) \(T, L^+ \) finiti. Questo non può verificarsi, perché altrimenti avrei una soluzione che vale \(a \) nell’istante \(t = 0 \), cresce e in \(T \) si arresta nel punto \((T, L^+)\). Se considero il problema di Cauchy centrato in \((T, L^+)\) posso prolungare la soluzione a destra, Affinché la soluzione sia prolungabile a destra devo verificare che \((T, L^+)\) appartenga al dominio della funzione.

\[
L^+ > -t
\]
e questo è vero perché

\[
L^+ > a > 1 > 0 > -t
\]
, quindi si va contro alla definizione di estremo massimale di definizione. Il caso L^+ infinito e T finito non si può verificare. Infatti, siccome $a \geq 1$, $x_a(t) \geq 1 \forall t \geq 0$. In particolare:

$$t + x_a(t) \geq 1 \forall t \geq 0$$

$$x'_a(t) = \frac{1}{\sqrt{t + x_a(t)}} \leq \frac{1}{\sqrt{1}} = 1, \forall t \geq 0$$

$$x_a(t) \leq x_a(0) + \int_0^T 1 \, ds \leq a + T, \forall t \in (0, T)$$

Passando al limite per $t \to T$ ottengo:

$$t^+ = +\infty \leq a + T$$

con T finito, e non può verificarsi. Allora sicuramente $T = +\infty$. Supponiamo t^+ finito, allora

$$t + x_a(t) \leq t + t^+ \forall t \geq 0$$

$$x'_a(t) \geq \frac{1}{\sqrt{t + t^+}} \forall t \geq 0$$

$$\int_0^t x'_a(s) \, ds \geq \int_0^t (s + L^+)^{-1/2} \, ds \geq 2(t + t^+)^{1/2} - 2\sqrt{t^+}$$

$$x_a(t) - x_a(0) \geq 2(t + t^+)^{1/2} - 2\sqrt{t^+}$$

Passo al limite per $t \to +\infty$:

$$L^+ - a \geq +\infty$$

, in contraddizione con il fatto che L^+ è finito. Allora vale il quarto caso: $t = +\infty$ e $t^+ = +\infty$. Chiamo τ l’estremo inferiore del dominio, allora esiste

$$\lim_{t \to \tau^+} y_a(t)$$

$$\forall t \in (\tau, +\infty) \, (t, x_a(t) \in D_f)$$

$$d_f = \{x \geq -t\}$$

Allora $-t \leq x_a(t) \leq a \forall t \in (\tau, 0)$ e $t \geq -a, \forall t \in (\tau, 0)$.

$$t \to \tau \to \tau \geq -a$$

quindi l’estremo di definizione è finito e l^- è infinito e la soluzione ha un asintoto verticale. Supponiamo di avere una soluzione definita per $a < 1$. Questa soluzione cambia convessità, inoltra incrocia tutte quelle definite in precedenza.

Esercizio 4.15

Considero il problema di Cauchy:
\[\begin{align*}
 \begin{cases}
 y' = x^2 \cdot \cos y \\
 y(0) = a, \quad a \in \mathbb{R}
 \end{cases}
\end{align*}\]

Discutere esistenza e unicità globale delle soluzioni e tracciarne un grafico qualitativo.

La funzione è di classe \(C^\infty\) quindi c’è esistenza e unicità locale.

Verifico se c’è esistenza e unicità globale della soluzione.

\[|f(x, y)| = |x^2 \cos y|\]

Ogni striscia del tipo \((-b, b) \times \mathbb{R}\) è contenuta nel dominio della funzione.

\[|f(x, y)| \leq b^2\]

allora sono soddisfatte le ipotesi del teorema di esistenza globale delle soluzioni nella striscia \([-b, b] \times \mathbb{R}\), in particolare l’ipotesi

\[|f(x, y)| \leq c_1 + c_2 y\]

è verificata con \(c_1 = L^2\) e \(c_2 = 0\). Questo vale per ogni \(b\), allora c’è esistenza globale in tutto \(\mathbb{R}\) della soluzione.

Cerco \(\bar{y} \in \mathbb{R}\) tale che \(x^2 \cdot \cos \bar{y} = 0\), e ottengo la soluzione costante:

\[\bar{y} = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}\]

Se \(y_a\) è soluzione del problema di Cauchy con dato iniziale \(y_a(0) = a\) allora \(y_a(x + 2\pi) = y_{a+2\pi}(x)\).

Dim. Pongo \(W_a(x) = y_a(x + 2\pi)\).

\[W'_a(x) = y'_a(x) = x^2 \cdot \cos y_a(x) = x^2 \cdot \cos(y_a(x + 2\pi)) = x^2 \cdot \cos w_a(x)\]

allora \(w_a\) è soluzione dell’equazione differenziale che sto considerando.

\[W_a(0) = Y_a(0 + 2\pi) = a + 2\pi\]

Considero ora il problema di Cauchy:

\[\begin{align*}
 \begin{cases}
 y' = x^2 \cdot \cos y \\
 y(0) = a + 2\pi
 \end{cases}
 \end{align*}\]

Allora \(y_{a+2\pi}\) è soluzione per definizione.

Anche \(W_a\) è soluzione per quanto dimostrato precedentemente, allora per unicità le soluzioni coincidono.
Studio il problema di Cauchy per \(a \in (\pi/2, 3\pi/2) \). Le altre soluzioni si trovano per traslazione.

Per \(a \in (-\pi/2, 3\pi/2) \) ci sono tre soluzioni costanti:

\[
x = 3\pi/2, x = \pi/2, x = -\pi/2
\]

Studio la monotonia delle soluzioni:

\[
x^2 \cdot \cos y > 0 \\
x^2 \geq 0 \\
\cos y > 0 \text{ se } y \in (-\pi/2, \pi/2) \\
\cos y < 0 \text{ se } y \in (\pi/2, 3\pi/2)
\]

Allora le soluzioni sono monotone non decrescenti quando stanno in \(\mathbb{R} \times (-\pi/2, \pi/2) \), mentre sono non crescenti per \(x \in (\pi/2, 3\pi/2) \).

L’asse \(y \) è luogo di punti stazionari per le soluzioni.

Ora studio il comportamento asintotico: in questo caso si sa già che le soluzioni sono definite globalmente.

\[
a \in (-\pi/2, \pi/2)
\]

Per monotonia esiste

\[
\lim_{x \to +\infty} y_a(x) = L^+ \\
-\pi/2 \leq L^+ \leq \pi/2
\]

e per monotonia \(L^+ > a \). Allora, per il teorema dell’asintoto:

\[
0 = \lim_{t \to +\infty} y'(x) = \lim x^2 \cdot \cos L^+
\]

allora \(L^+ = \pm \pi/2 \), ma \(L^+ = \pi/2 \) per monotonia.

Analogamente \(L^- = -\pi/2 \).

Usando il teorema dell’asintoto si può dimostrare che se la soluzione è definita per \(\pi/2 < a < 3\pi/2 \), quando \(x \to -\infty \) la soluzione tende a \(3\pi/2 \) e quando \(x \to +\infty \) il limite è \(\pi/2 \). La soluzione ha un flesso in \(0 \).

4.4 Equazioni differenziali di ordine n

4.4.1 Richiami teorici

Considero un’equazione omogenea della forma:

\[
a_0 \cdot y^{(n)} + a_1 \cdot y^{(n-1)} + \cdots + a_n = 0 \quad \text{equazione 1}
\]
alla quale posso associare il polinomio

\[a_0 \lambda^n + \cdots + a_{n-1} \lambda + a_n = 0 \]

Zeri reali Supponiamo che \(\lambda \in \mathbb{R} \) risolva l’equazione caratteristica con molteplicità \(k \), allora \(k \) soluzioni linearmente indipendenti dell’equazione 1 sono date da

\[e^{\lambda x}, x e^{\lambda x}, \ldots, x^{k-1} e^{\lambda x}. \]

Zeri complessi Se \(\alpha \pm i \beta \) è una coppia di soluzioni caratteristiche con una molteplicità \(h \), allora \(2h \) soluzioni linearmente indipendenti dell’equazione differenziale sono date da:

\[e^{\alpha x} \cos(\beta x), e^{\alpha x} \sin(\beta x), x e^{\alpha x} \cos(\beta x), x e^{\alpha x} \sin(\beta x), x^{k-1} e^{\alpha x} \cos(\beta x), x^{k-1} e^{\alpha x} \sin(\beta x). \]

Consideriamo ora invece un’equazione non omogenea della forma:

\[a_0 y^{(n)} + \cdots + a_{n-1} y + a_n = f(x) \text{equazione 2} \]

Per risolvere quest’equazione si usa il metodo di variazione delle costanti.

Supponiamo di avere \(z_1, z_2, \ldots, z_n \) soluzioni indipendenti dell’equazione omogenea associata all’equazione 2. Allora definisco il determinante Wronksiano

\[
W(x) = \begin{vmatrix} z_1(x) & z_2(x) & \ldots & z_n(x) \\ z'_1(x) & z'_2(x) & \ldots & z'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ z_{(n-1)}^1(x) & z_{(n-1)}^2(x) & \ldots & z_{n-1}^{(n-1)}(x) \end{vmatrix}
\]

Definisco la matrice:

\[
W_{1n}(t, x) = \begin{vmatrix} z_1(t) & z_2(t) & \ldots & z_n(t) \\ z'_1(t) & z'_2(t) & \ldots & z'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ z_{(n-2)}^1(t) & z_{(n-2)}^2(t) & \ldots & z_{n-1}^{(n-2)}(t) \\ z_1(x) & z_2(x) & \ldots & z_n(x) \end{vmatrix}
\]

allora

\[
U(x) = \int_0^x \frac{\det W_{1n}(t, x)}{\det W(x)} f(t) \, dt
\]

e questo vale nell’ipotesi che la funzione \(f \) sia definita in 0, altrimenti al posto di 0 si mette \(\bar{x} \) nel dominio di \(f \).

Non è sempre necessario ricorrere al metodo delle costanti arbitrarie. Supponiamo di avere:

\[f(x) = e^{\alpha x} [p_m(x) \sin(\beta x) + r_m(x) \cos(\beta x)] \text{ equazione 4} \]
con p_m, r_m polinomi di grado al più n.

Una soluzione particolare dell’equazione 2 si trova nella forma:

$$w(x) = x^k \cdot (p'_m(x) \sin(\beta x) + r'_m(x) \cos(\beta x) \cdot e^{\alpha x})$$

equazione 5
dove k è la molteplicità di $\alpha \pm i\beta$ come soluzione dell’equazione omogenea.

p'_m, r'_m sono polinomi dello stesso grado di p_m, r_m e si determinano sostituendo quest’espressione della soluzione nell’equazione differenziale di partenza.

Esercizio 4.16

Determinare l’integrale generale delle seguenti equazioni omogenee a coefficienti costanti.

$$y^{(3)} + 6y^{(2)} + 11y' + 6y = 0$$

1. Scrivo l’equazione caratteristica associata:

$$x^3 + 6x^2 + 11x + 6 = 0$$

2. Cerco le radici del polinomio. Le radici razionali si trovano tra i divisori del termine noto, e le possibilità sono quindi $\pm 1, \pm 2, \pm 3, \pm 6$.

 $$\lambda = 1 \longrightarrow 1 + 6 + 11 + 6 \neq 0$$

 $$\lambda = -1 \longrightarrow -1 + 6 - 11 + 6 = 0$$

 $$\lambda = -2 \longrightarrow -8 + 24 - 22 + 6 = 0$$

 $$\lambda = -3 \longrightarrow -27 + 54 - 33 + 6 = 0$$

Non cerco altre radici perché un polinomio di grado 3 ha al più tre radici. Allora $\lambda = -2, \lambda = -1$ e $\lambda = -3$ sono radici di molteplicità 1.

3. Scrivo l’integrale generale è:

$$y(x) = c_1 \cdot e^{-x} + c_2 \cdot e^{-2x} + c_3 \cdot e^{-6x}$$

Esercizio 4.17

Determinare l’integrale generale dell’equazione:

$$y^{(4)} - 3y^{(3)} = 0$$

L’equazione caratteristica associata è

$$\lambda^3 \cdot (\lambda - 3) = 0$$
allora le soluzioni sono $\lambda = 0$ con molteplicità 3 e $\lambda = 3$ con molteplicità 1.

L’integrale generale si scrive come:

$$y = c_1 \cdot e^0 + c_2 x \cdot e^0 + c_3 x^2 \cdot e^0 + c_4 \cdot e^{3x}$$

$$y = c_1 + c_2 x + c_3 x^2 + c_4 \cdot e^{3x}$$

Esercizio 4.18

Determinare l’integrale generale delle seguenti equazioni non omogenee:

$$y^{(3)} + 6y^{(2)} + 11y' + 6y = \sinh x$$

L’equazione omogenea è già stata studiata, vogliamo quindi calcolare una soluzione particolare.

Vogliamo verificare se si può evitare il metodo di variazione delle costanti, e quindi se $f(x)$ si può scrivere come somma di funzioni del tipo 4 (somme di polinomi per seni e coseni). Allora scrivo:

$$f(x) = f_1(x) + f_2(x)$$

con f_1, f_2 funzioni del tipo 4. Trovo una soluzione w_1 di:

$$y^{(3)} + 6y^{(2)} + 11y' + 6y = f_1$$

e una soluzione w_2 di

$$y^{(3)} + 6y^{(2)} + 11y' + 6y = f_2$$

allora per linearità $u(x) = w_1(x) + w_2(x)$ è soluzione dell’equazione differenziale.

$$\sinh x = (e^x - e^{-x})/2, \quad f_1 = 1/2 \cdot e^x, \quad f_2 = 1/2e^{-x}$$

Mi chiedo se f_1 è uguale a

$$e^{\alpha x} \cdot (p_m(x) \cdot \sin(\beta x) + h_m(x) \cdot \cos(\beta x))$$

Per risolvere l’equazione:

$$e^{\alpha x} \cdot (p_m(x) \cdot \sin(\beta x) + h_m(x) \cdot \cos(\beta x)) = 1/2 \cdot e^x$$

Pongo $\beta = 0$, in modo che $p_m \cdot \sin(\beta x) = 0$ e $h_m \cdot \cos(\beta x) = H_m$, inoltre $r_m = 1/2$ (polinomio di grado 0) e $\alpha = 1$.

Allora

$$\alpha \pm i\beta = \alpha = 1$$
e $\lambda = 1$ non è soluzione dell’equazione caratteristica, e ha quindi molteplicità nulla. La soluzione è del tipo:

$$w_1(x) = x^k \cdot (q_m(x) \sin(\beta x) + r_m(x) \cos(\beta x)) \cdot e^{\alpha x}$$

$\alpha = 1, \beta = 0, k = 0 \quad \rightarrow \quad w_1(x) = (q_m(x) \sin 0 + r_m(x) \cos 0) \cdot e^x = r_m(x) \cdot e^x$

e pongo la costante $r_m(x) = A$.

$$w_1(x) = A \cdot e^x$$

Analogamente, $f_2(x) = -1/2e^{-x}$ può essere scritta nella forma desiderata se pongo $\beta = 0$, allora risolvo:

$$-1/2e^{-x} = e^{\alpha x} \cdot h_m(x)$$

e quest’equazione è soddisfatta per $\alpha = -1$ e $h_m(x) = -1/2$.

Allora applico il metodo precedente:

$$\alpha \pm i\beta = -1$$

che è soluzione dell’equazione caratteristica con molteplicità 1 . Una soluzione particolare dell’equazione

$$y^{(3)} + 6y^{(2)} + 11y' + 6 = f_2(x)$$

e del tipo $w_2(x) = x^k \cdot e^{\alpha x} \cdot r_m(x) = x \cdot e^{-x} \cdot B$ con B polinomio di grado 0 .

Allora:

$$u(x) = w_1(x) + w_2(x) = y^{(3)} + 6y^{(2)} + 11y' + 6y = \sinh x$$

per un’opportuna scelta di A, B .

$$w_1(x) + w_2(x) = A \cdot e^x + B \cdot x \cdot e^{-x}$$

Faccio le derivate e sostituisco nell’equazione differenziale, in modo da ricavare un’espressione per A e B :

$$u'(x) = A \cdot e^x + B \cdot e^{-x} - B \cdot x \cdot e^{-x} = A \cdot e^x + B \cdot e^{-x} \cdot (1 - x)$$

$$u^{(2)}(x) = A \cdot e^x - B \cdot e^{-x} - B \cdot e^{-x} \cdot (1 - x) = A \cdot e^x + B \cdot e^{-x} \cdot (x - 2)$$

$$u^{(3)} = A \cdot e^x - B \cdot e^{-x} + B \cdot e^{-x} \cdot (x - 2) = A \cdot e^x + B \cdot e^{-x} \cdot (x - 3)$$

Sostituisco in:

$$y^{(3)} + 6y^{(2)} + 11y' + 6y = \sinh x$$

e ottengo:
Capitolo 4. Equazioni differenziali

\[A*e^x + B*e^{-x}*(x-3) + 6[A*e^x + B*e^{-x}*(x-2)] + 11[A*e^x - B*e^{-x}*(x-1)] + 6A*e^x + 6Bx*e^{-x} = 1/2e^x - 1/2e^{-x} \]

\[24Ae^x + 2Be^{-x} = 1/2e^x - 1/2e^{-x} \]

\[24A = 1/2 \]
\[A = \frac{1}{48} \]
\[2B = -1/2 \]
\[B = -1/4 \]

Allora una soluzione particolare è della forma:

\[u(x) = \frac{1}{48} e^x - 1/4 * x * e^{-x} \]

e l’integrale generale si ottiene sommando a questo risultato un integrale generale dell’equazione omogenea.

Esercizio 4.19

Determinare l’integrale generale dell’equazione:

\[y^{(4)} - 3y^{(3)} = x + 1. \]

1. La soluzione generale dell’equazione omogenea è:

\[y(x) = c_1 + c_2x + c_3x^2 + c_4e^{3x} \]

2. Verifico se

\[x + 1 = e^{\alpha x} * (p_m(x) * \sin(\beta x) + r_m(x) * \cos(\beta x)) \]

Pongo \(\alpha = \beta = 0 \) e \(r_m(x) = x + 1 \).

3. \(\alpha + i\beta = 0 \). 0 è soluzione dell’equazione omogenea con molteplicità 3, quindi:

\[u(x) = e^{\alpha x} * [p_m(x) * \sin(\alpha x) + r_m(x) * \cos(\beta x)] * x^k = x^3 * r_m(x) \]

e con \(r_m(x) \) polinomio di grado 1 che si può scrivere come \(Ax + B \). Quindi:

\[u(x) = x^3 * (Ax + B) = Ax^4 + Bx^3 \]

4. Le derivate di \(u(x) \) sono

\[u'(x) = 4Ax^3 + 3Bx^2 \]
\[u^{(2)}(x) = 12Ax^2 + 6Bx \]
\[u^{(3)}(x) = 24Ax + 6B \]
\[u^{(4)}(x) = 24A \]
5. Sostituisco le derivate nell’equazione:

\[y^{(4)} - 3y^{(3)} = x + 1 \]

\[24A - 3 \times (24Ax + 6B) = x + 1 \]

\[24A - 72Ax - 18B = x + 1 \]

\[
\begin{aligned}
72A &= -1 \\
24A - 18B &= 1
\end{aligned}
\]

\[A = -1/(72), \quad B = -\frac{2}{27} \]

6. La soluzione particolare è:

\[u(x) = -1/72x^4 - 2/27x^3 \]

7. L’integrale generale è

\[y(x) = c_1 + c_2x + c_3x^2 + c_4e^{3x} - 1/72x^4 - 2/27x^3 \]

Esercizio 4.20

Utilizzando il metodo di variazione delle costanti si scriva l’integrale generale dell’equazione

\[y^{(2)} + \omega^2 y = f(x) \]

con \(\omega \) numero reale positivo e \(f \) funzione continua.

Si determini un integrale particolare nel caso \(\omega = 1 \) e \(f(x) = \sin x \cos x \).

Consideriamo l’equazione caratteristica associata all’omogenea:

\[\lambda^2 + \omega^2 = 0 \]

\[\lambda^2 = -\omega^2 \]

\[\lambda = \pm i\omega \]

Allora il polinomio ha come radici due numeri complessi coniugati della forma \(\alpha \pm i\beta \) con \(\alpha = 0 \) e \(\beta = \omega \). L’integrale generale dell’equazione omogenea è dato da:

\[c_1 \times e^{\alpha t} \times \cos(\beta t) + c_2 \times e^{\alpha t} \times \sin(\beta t) \]

e quindi

\[c_1 \times \cos(\omega t) + c_2 \times \sin(\omega t) \]

con \(c_1, c_2 \in \mathbb{R} \).

Pongo:
$z_1 = \cos(\omega x), \; z_2 = \sin(\omega x)$

Calcolo il determinante wronskiano:

$$W(x) = \begin{pmatrix} z_1(x) & z_2(x) \\ z_1'(x) & z_2'(x) \end{pmatrix}$$

$$W(x) = \begin{pmatrix} \cos(\omega x) & \sin(\omega x) \\ -\omega \sin(\omega x) & \omega \cos(\omega x) \end{pmatrix}$$

$$\det W(x) = \omega \cos^2 x + \omega \sin^2 x = \omega$$

$$W_{12} = \begin{pmatrix} z_1(t) & z_2(t) \\ z_1(x) & z_2(x) \end{pmatrix}$$

$$W_{12}(x, t) = \begin{pmatrix} \cos(\omega t) & \sin(\omega t) \\ \cos(\omega x) & \sin(\omega x) \end{pmatrix}$$

$$\det W_{12} = \cos(\omega t) \sin(\omega x) - \sin(\omega t) * \cos(\omega x)$$

$$U(x) = \int_0^x \frac{W_{12}(x, t)}{W(t)} f(t) \, dt = 1/\omega * \int_0^x \det W_{12}(x, t) f(t) \, dt$$

$$y(x) = c_1 \cos(\omega x) + c_2 \sin(\omega x) + u(x)$$

Nel caso particolare $\omega = 1$, $f(x) = \sin x \cos x$ si ha:

$$u(x) = \int_0^x (\cos t \sin x - \sin t \cos x) \ast (\sin t \cos t) \, dt$$

$$= \int_0^x \cos^2 t \sin x - \sin^2 t \cos t \cos x \, dt$$

Uso la linearità dell’integrale:

$$\sin x \ast \int_0^x \cos^2 t \sin t \, dt - \cos x \ast \int_0^x \sin^2 t \cos t \, dt$$

Pongo $\cos t = s$.

$$-\sin t \, dt = ds$$

$$t = 0 \rightarrow s = \cos 0 = 1$$

$$t = x \rightarrow s = \cos x$$

$$-\sin x \ast \int_1^{\cos x} s^2 \, ds =$$

$$-1/3 \ast \sin x \ast \left[s^{3 \cos x} \right]_1 = -1/3 \ast \sin x \ast \left[(\cos x)^3 - 1 \right]$$

$$\cos x \ast \int_0^x \sin^2 t \cos t \, dt =$$

Pongo $s = \sin t$, $ds = \cos t \, dt$.

$$t = 0 \rightarrow s = \sin 0 = 0, \quad t = x \rightarrow s = \cos x$$
\[
\cos x \cdot \int_0^x \cos s \, ds = \\
1/3 \cdot \cos x \cdot \left[s^3 \cos x \right]_0 = 1/3 \cdot \cos x \cdot (\cos x)^3
\]

Allora una soluzione particolare dell’equazione è:

\[
1/3 \cdot (\cos x)^4 - 1/3 \cdot \sin x \cdot [(\cos x)^3 - 1]
\]

Esercizio 4.21

Consideriamo l’equazione:

\[
x^{(2)} + \omega^2 x = \cos(\nu t) \quad \text{equazione del pendolo}
\]

con \(\nu \) costante reale, e \(\omega, \nu \) numeri reali positivi. Si chiede di scriverne l’integrale generale.

L’equazione omogenea si risolve come prima:

\[
\lambda^2 + \omega^2 = 0 \\
\lambda = \pm i\omega
\]

e ha due soluzioni complesse. L’integrale generale è quindi:

\[
y(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)
\]

Cerco ora l’integrale particolare: non ricorro al metodo di variazione delle costanti e cerco i valori di \(\alpha, \beta, r_m, p_m \) che soddisfano l’equazione:

\[
\cos(\nu t) = e^{\alpha t} \cdot (p_m(t) \cdot \sin(\beta t) + h_m(t) \cdot \cos(\beta t))
\]

Pongo \(\alpha = 0 \), \(\beta = \nu \), \(p_m(t) = 0 \), \(h_m(t) = 1 \), alloa la disuguaglianza è verificata.

Consideriamo:

\[
\alpha \pm i\beta = \pm \nu
\]

1. Se \(\nu \neq \omega \), allora non è soluzione dell’equazione omogenea e ha quindi molteplicità 0. Allora una soluzione particolare è data da:

\[
u(t) = [Q_m(t) \cdot \sin(\nu t) + s_m(t) \cdot \cos(\nu t)]
\]

con \(q_m, s_m \) polinomi di grado 0 che indico con \(A, B \).

\[
u'(t) = \nu \cdot A \cdot \cos(\nu t) - \nu \cdot B \cdot \sin(\nu t)
\]

\[
u''(t) = -\nu^2 \cdot A \cdot \sin(\nu t) - \nu^2 \cdot B \cdot \cos(\nu t)
\]

e sostituendo nell’equazione ottengo:

\[
-\nu^2 \cdot A \cdot \sin(\nu t) - \nu^2 \cdot B \cdot \cos(\nu t) + \omega^2 + A \cdot \sin(\nu t) + \omega^2 \cdot B \cdot \cos(\nu t) = \cos(\nu t)
\]
\[
\begin{aligned}
-\nu^2 A + \omega^2 A &= 0 \\
-\nu^2 B + \omega^2 B &= 1
\end{aligned}
\]

Quindi \(A = 0 \) , \(B = \frac{1}{\omega^2 - \nu^2} \)

L’integrale generale dell’equazione del pendolo con \(\nu \neq \omega \) , è:

\[
x(t) = c_1 \sin(\omega t) + c_2 \sin(\nu t) + \frac{1}{\omega^2 - \nu^2} \cos(\nu t)
\]

Ho una somma di funzioni periodiche con periodo determinato da \(\omega, \nu \) . Allora il pendolo ha una sua oscillazione propria mentre la forzante ha un periodo diverso.

2. Nel caso in cui \(\omega = \nu \) si osserva il fenomeno della risonanza: la frequenza propria del pendolo coincide con la frequenza della forzante che stiamo applicando. Le soluzioni:

\[
\alpha \pm i\nu = \pm i\omega
\]

sono anche soluzioni dell’equazione omogenea con molteplicità 1. Quindi una soluzione particolare dell’equazione completa è:

\[
U(t) = t \left[A \cos(\omega t) + B \sin(\omega t) \right]
\]

\[
U'(t) = \left[A \cos(\omega t) + B \sin(\omega t) \right] + t \left[-\omega A \sin(\omega t) + \omega B \cos(\omega t) \right]
\]

\[
U''(t) = -\omega A \sin(\omega t) + \omega B \cos(\omega t) - \omega A \sin(\omega t) + \omega B \cos(\omega t) + t \left[-\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t) \right]
\]

\[
U'''(t) = -2\omega A \sin(\omega t) + 2\omega B \cos(\omega t) + t \left[-\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t) \right]
\]

\[
-2\omega A \sin(\omega t) + 2\omega B \cos(\omega t) + 2\omega A \sin(\omega t) + t \left[-\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t) \right] = 0
\]

quindi \(B = 0 \) , \(A = \frac{1}{2\omega} \). L’integrale generale è:

\[
x(t) = \frac{1}{2\omega} \left(t \sin(\omega t) + c_1 \cos(\omega t) + c_2 \sin(\omega t) \right)
\]

con \(c_1, c_2 \) numeri reali. Scelgo \(c_1, c_2 = 0 \) e ottengo:

\[
x(t) = \frac{1}{2\omega} \left(t \sin(\omega t) \right)
\]
Capitolo 5

Curve

5.1 Richiami teorici

1. Considero una funzione \(\alpha: [a, b] \to \mathbb{R}^n \) di classe \(C^1 \) su tutto \([a, b]\). \(\alpha \) si dice curva e l’immagine \(\alpha([a, b]) \) si chiama sostegno della curva.

2. Supponiamo di avere una curva di componenti \((x(t), y(t))\) con \(\alpha'(t) = (x'(t), y'(t)) \) allora si pone:
\[
ds = |\alpha'(t)| \, dt = \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]
e si definisce la lunghezza della curva come
\[
l_\gamma = \int_a^b 1 \, ds
\]
inoltre si definisce versore tangent alla curva \(\alpha \) nel punto \(P \) la quantità
\[
T_\gamma = \frac{\alpha'(P)}{|\alpha'(P)|}
\]

3. Sia \(D \) un aperto di \(\mathbb{R}^n \) tale che \(\alpha([a, b]) \subset D \) Allora si definisce integrale di \(f \) rispetto alla lunghezza d’arco la quantità:
\[
\int_a^b f(\alpha(t))|\alpha'(t)| \, dt.
\]

4. Data una curva \(\alpha: [a, b] \to \mathbb{R}^n \) si definisce ascissa curvilinea la quantità
\[
s(t) = \int_a^t |\alpha'(\tau)| \, d\tau
\]
e la curva
\[
\Gamma: (0, l(\gamma)) \to \mathbb{R}^n \text{ t.c. } \Gamma = \gamma \circ s^{-1}
\]
è detta rappresentazione di \(\gamma \) in termini dell’ascissa curvilinea.
5.2 Curve

Esercizio 5.1

La *cicloide* è la curva descritta da un punto di una circonferenza di raggio R quando la circonferenza rotola, senza strisciare, sull’asse delle x. Una parametrizzazione della cicloide è data da

$$\gamma(t) = (R(t - \sin t), R(1 - \cos t)), \quad t \in [0, 2\pi].$$

Si calcoli la lunghezza della cicloide.

Per poter calcolare $l(\gamma)$ occorre calcolare:

$$\gamma'(t) = (R(1 - \cos t), R \sin t)$$

$$|\gamma'(t)| = \sqrt{(R(1 - \cos t))^2 + R^2 \sin^2 t} = \sqrt{2R^2 - 2R^2 \cos t}$$

Quindi

$$l(\gamma) = R \int_0^{2\pi} \sqrt{2 - 2\cos t} \, dt$$

$$L(\gamma) = \sqrt{2}R \int_0^{2\pi} \sqrt{1 - \cos t} \, dt$$

$$L(\gamma) = 2R \int_0^{2\pi} \sin(t/2) \, dt$$

$$L(\gamma) = R \int_0^{2\pi} [-\cos(t/2)]_0^{2\pi} \, dt$$

$$L(\gamma) = R \int_0^{2\pi} \, dt = 2\pi R$$

Esercizio 5.2 (disegno)

La *cardioide* è la curva di sostegno

$$\{(\rho \cos \theta, \rho \sin \theta) : 0 \leq \theta \leq 2\pi, \rho = a(1 + \cos \theta)\}$$

con $a \in (0, +\infty)$ parametro positivo fissato. Si disegni il sostegno e si calcoli la lunghezza della cardioide.

Osservazione 5.1

Data una curva in coordinate polari della forma:

$$\rho = \phi(\theta)$$

si ricorda che

$$x = \rho \cos \theta, \quad y = \rho \sin \theta$$
allora per scrivere le equazioni parametriche in coordinate cartesiane sostituiamo a $\rho \phi(\theta)$ e ottengo:

$$x(\theta) = \phi(\theta) \cos \theta, \quad y(\theta) = \phi(\theta) \sin \theta$$

dove θ è il parametro della curva.

La curva data nell’esercizio è della forma $\rho = \phi(\theta)$, e si può riscrivere come:

$$\{(x(\theta), y(\theta), t.c. x = a(1 + \cos \theta) \cos \theta, y = a * (1 + \cos \theta) * \sin \theta)\}$$

Calcolo quindi $x'(\theta), y'(\theta), |\gamma(\theta)|$:

$$x'(\theta) = a(- \sin \theta - 2 \cos \theta \sin \theta) = -a(\sin \theta + \sin(2\theta))$$
$$y'(\theta) = a(\sin \theta + \cos(2\theta))$$
$$|\gamma'(t)| = a\sqrt{(\sin \theta + \sin(2\theta))^2 + (\cos \theta + \cos(2\theta))^2}$$

Posso quindi calcolare la lunghezza della curva:

$$l(\gamma) = a\sqrt{2} \int_{0}^{2\pi} \sqrt{1 + \cos \theta} \, d\theta$$

Esercizio 5.3

La catenaria (cioè la curva secondo cui si dispone una fune appesa a due punti estremi che sia lasciata pendere sotto il solo effetto del proprio peso) è il grafico del coseno iperbolico. Si consideri il seguente arco di catenaria

$$\gamma(t) = (t, \cosh t), \quad t \in [0, 1],$$

e se ne scriva la rappresentazione in termini dell’ascissa curvilinea.

La rappresentazione di γ in termini dell’ascissa curvilinea è data dalla formula:
\[\Gamma = \gamma \circ s^{-1}(\sigma) \]
dove \(s(t) = \int_a^t |\gamma'(\tau)| \, d\tau \).

\[
\gamma'(\tau) = (1, \sinh \tau)
\]
\[|\gamma'(\tau)| = \sqrt{1 + \sinh^2 \tau} = \cosh \tau \]
\[
s(t) = \int_0^t \cosh \tau \, d\tau = \sinh t \sinh t
\]
\[
s^{-1}(t) = t = \text{sett sinh} t = \log(s + \sqrt{s^2 + 1})
\]
Quindi:

\[\Gamma = \gamma \circ s^{-1}(\sigma) = (t, \cosh t)(s^{-1}(\sigma)) = (\log(\sigma + \sqrt{\sigma^2 + 1}), \sigma) \]

5.3 Applicazione diretta delle formule

Esercizio 5.4

Si calcoli la lunghezza della curva

\[\gamma : \left[0, \frac{\pi}{2}\right] \to \mathbb{R}^2, \quad \gamma(t) = (e^t \sin t, e^t \cos t). \]
Basta applicare la formula

\[L_\gamma = \int_{\gamma} 1 \, ds \]
dove

\[ds = |\gamma'(t)| \, dt = \sqrt{x'(t)^2 + y'(t)^2} \, dt. \]
Allora calcolo:

\[
\gamma'(t) = (e^t \sin t + e^t \cos t, \ e^t \cos t - e^t \sin t)
\]
\[|\gamma'(t)| = \sqrt{(e^t \sin t + e^t \cos t)^2 + (e^t \cos t - e^t \sin t)^2} \]
\[= \sqrt{e^{2t} \sin^2 t + e^{2t} \cos^2 t + 2e^{2t} \sin t \cos t + e^{2t} \cos^2 t + e^{2t} \sin^2 t - 2e^{2t} \cos t \sin t} \]
\[= \sqrt{2} e^t \]
\[L_\gamma = \int_0^{\pi/2} |\gamma'(t)| \, dt = \sqrt{2} \int_0^{\pi/2} e^t \, dt = \sqrt{2} \left[e^t \right]_0^{\pi/2} = \sqrt{2} \left(e^{\pi/2} - 1 \right) \]

Esercizio 5.5

Siano
\[\gamma : [1, e^2] \to \mathbb{R}^3, \quad \gamma(t) = (\cos(\log t), \sin(\log t), t),\]

e
\[f : \mathbb{R}^2 \times (0, +\infty) \to \mathbb{R}, \quad f(x, y, z) = e^{2\log z} \cdot \frac{1}{t^2} \sin(\log t) ; 1 \quad \frac{1}{t^2} \cos(\log t) ; 1 \quad \frac{1}{t^2} \sqrt{1 + t^2} \cdot 1 / t \cdot \sqrt{1 + t^2} \]

Sostituendo nell’integrale:
\[\int_{1}^{e^2} e^{2\log t} \cdot \frac{1}{t} \cdot \sqrt{1 + t^2} \cdot dt = \int_{1}^{e^2} (e^{\log t})^2 \cdot \frac{1}{t} \cdot \sqrt{1 + t^2} \cdot dt = \int_{1}^{e^2} t^2 \cdot \frac{1}{t} \cdot \sqrt{1 + t^2} \cdot dt = \int_{1}^{e^2} t \cdot \sqrt{1 + t^2} \cdot dt = 1/2 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot (1 + e^4)^{3/2} + 2 \cdot \sqrt{2} \]

Esercizio 5.6

Siano \(\gamma : [\frac{-1}{2}, 1] \to \mathbb{R}^2, \gamma(t) = (t e^t, \log(1 + t))\) e \(P = (0, 0)\). Si determini il versore tangente a \(\gamma\) nel punto \(P \in \gamma^*\).

La curva è regolare, quindi:
\[T_\gamma = \frac{\gamma'(P)}{|\gamma'(P)|}\]

Allora calcolo
\[\gamma' = ((t + 1) * e^t, \frac{1}{t + 1}) \quad \gamma'(P) = (1, 1) \quad |\gamma'| = \sqrt{(t + 1)^2 * e^{2t} + \log^2(t + 1)}\]
\[|\gamma'(P)| = \sqrt{1+1} \]

Allora:
\[T_\gamma = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \]

Esercizio 5.7

Si calcoli la lunghezza della curva
\[\gamma : [0, \frac{\pi}{3}] \rightarrow \mathbb{R}^2, \]
\[\gamma(t) = \left(\int_0^t \sqrt{2u \arcsin u \frac{2u \arcsin u}{1-u^2}} \, du, \int_0^t \sqrt{u^2 + \left(\arcsin \frac{u}{2} \right)^2} \, du \right). \]

Per il teorema fondamentale del calcolo integrale, \(x'(t), y'(t) \) si ottengono valutando l’integrandi in \(\sin t \) e moltiplicandola per la derivata di \(\sin t \):
\[x'(t) = \sqrt{2 \sin t \arcsin \sin t \frac{2 \sin t \arcsin \sin t}{1-\sin^2 t}} \cdot \cos t \]
\[y'(t) = \sqrt{\frac{\sin^2 t + t^2}{\cos^2 t}} \cdot \cos t \]

Quindi
\[|\gamma'(t)| = \sqrt{2 \sin t + \sin^2 t + t^2} = \sqrt{(t + \sin t)^2} = t + \sin t \]
\[l(\gamma) = \int_0^{\pi/3} ds = \]
\[= \int_0^{\pi/3} t + \sin t \, dt = [t^2/2 - \cos t]_{0}^{\pi/3} = \pi^2/18 - 1/2 \]

5.4 Parametrizzazione di curve

Esercizio 5.8

Descrivere la curva:
\[A = \{(x, y) \in \mathbb{R}^2 \text{ t.c. } |x|^{2/3} + |y|^{2/3} = a^{2/3}\} \quad \text{asteroide} \]

e calcolare la lunghezza.

Descrizione della curva: Cerco una parametrizzazione del sostegno della curva. Osservo che, se \((x, y) \in A\) anche \((x, -y) \in A\), \((-x, y) \in A\), \((-x, -y) \in A\),
cioè la curva è simmetrica rispetto agli assi e rispetto alle bisettrici. Basta quindi studiare la curva in un quadrante. Nel quadrante \(x > 0, y > 0 \) la curva è descritta dall’equazione:

\[
x^{2/3} + y^{2/3} = a^{2/3}
\]

Esplicito la \(y \) in funzione della \(x \):

\[
y^{2/3} = a^{2/3} - x^{2/3}
\]

e siccome il primo membro è positivo si ha \(x \leq a \).

Elevando a \(3/2 \):

\[
y = (a^{2/3} - x^{2/3})^{3/2} = f(x)
\]

Quindi la funzione \(f(x) \) è continua nell’intervallo chiuso \([0, a]\), inoltre si ha:

\[
f'(x) = \frac{3}{2} * (a^{2/3} - x^{2/3})^{1/2} - \frac{2}{3} * x^{-1/3} = -\frac{(a^{2/3} - x^{2/3})^{1/2}}{x^{1/3}}
\]

Siccome per \(x > 0 \) la derivata è negativa, \(f(x) \) è decrescente.

\[
f(0) = (a^{2/3})^{3/2} = a
\]

e quindi la curva passa per i punti \((0, a)\) e \((a, 0)\).

Studiando la derivata seconda si può dimostrare anche che la curva è convessa.

Lunghezza della curva: Per simmetria, la lunghezza \(L_A \) della curva è pari a quattro volte la lunghezza di \(A \cap \{x \geq 0, y \geq 0\} \), quindi calcolo:

\[
L_A = 4 * \int_{A \cap \{x \geq 0, y \geq 0\}} ds
\]

Equazioni parametriche di \(A \):

\[
x = t, \quad y = [a^{2/3} - t^{2/3}]^{3/2}
\]

\[
x' = 1, \quad y' = \frac{a^{2/3} - t^{2/3}}{t^{1/3}}^{1/2}
\]

\[
\alpha'(t) = \frac{ds}{dt}
\]

\[
ds = \sqrt{1 + \frac{a^{2/3} - t^{2/3}}{t^{2/3}}} dt
\]

\[
ds = \sqrt{\frac{a^{2/3}}{t^{2/3}}} dt = \frac{a^{1/3}}{t^{1/3}} dt = a^{1/3}t^{-1/3} dt
\]

\[
ds = \sqrt{\frac{a^{2/3}}{t^{2/3}}} dt = a^{1/3}t^{-1/3} dt
\]
Quindi
\[L_A = 4 \int_0^a a^{1/3} t^{-1/3} \, dt = 3/2 \cdot 4a^{-1/3} [t^{2/3}]_0^a = 6a \]

Esercizio 5.9

Si calcoli la lunghezza della curva \(\gamma \) di sostegno

\[\gamma = \{(x, y) \in \mathbb{R}^2 : 1 \leq x \leq 2, y = \log \frac{e^x + 1}{e^x - 1}\} \]

Questa curva è una curva cartesiana che si può riscrivere come:

\[\gamma : [1, 2] \to \mathbb{R}^2 \text{ t.c. } \gamma(x) = (x, \log \frac{e^x + 1}{e^x - 1}) \]

\[\gamma'(t) = (1, \frac{e^x - 1}{e^x + 1} \cdot \frac{(e^x - 1)e^x - e^x(e^x + 1)}{(e^x - 1)^2}) \]

\[\gamma'(t) = (1, \frac{1}{e^x + 1} \cdot \frac{e^{2x} - e^x - e^{2x} - e^x}{e^x + 1}) \]

\[\gamma'(t) = (1, \frac{-2e^x}{e^{2x} - 1}) \]

Quindi

\[|\gamma'(t)| = \sqrt{1 + \frac{4e^{2x}}{(e^{2x} - 1)^2}} \]

\[|\gamma'(t)| = \sqrt{e^{4x} + 1 - 2e^{2x} + 4e^{2x}} \frac{(e^{2x} - 1)^2}{(e^{2x} - 1)^2} \]

\[|\gamma'(t)| = \sqrt{\frac{e^{4x} + 2e^{2x} + 1}{(e^{2x} - 1)^2}} \]

\[|\gamma'(t)| = \frac{e^{2x} + 1}{e^{2x} - 1} \]

Calcolo l’integrale:

\[l(\gamma) = \int_1^2 \frac{e^{2x} + 1}{e^{2x} - 1} \, dx \]

\[l(\gamma) = \int_1^2 \coth x \, dx = [\log \tanh x]^2_1 = \log \tanh 2 - \log \tanh 1 \]

Esercizio 5.10

Parametrizzare l’ellisse definita come:

\[\{(x, y) \in \mathbb{R}^2 \text{ t.c. } \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} \leq 1\} \]
Questa è un’ellisse con semiasse maggiore a, semiasse minore b. Possiamo parametrizzare l’ellisse partendo da $(a,0)$ in senso antiorario o in senso orario, e si avranno due parametrizzazioni distinte.

Pongo:

$$\begin{cases}
\cos^2 t = \frac{(x-x_0)^2}{a^2} \\
\sin^2 t = \frac{(y-y_0)^2}{b^2}
\end{cases}$$

Dalla prima equazione ricavo $(x-x_0)^2 = a^2 \cos^2 t$, cioè $x = x_0 \pm a \cos t$, $x = x_0 \pm a \cos t$. Analogamente $y = y_0 \pm b \sin t$.

Parametrizzazione in senso antiorario: $\cos^2 t + \sin^2 t = 1 \forall t$, ma supponiamo per periodicità $t \in [0, 2\pi]$. Inoltre si ha:

$$x = x_0 + a \cos t, \quad y = y_0 + b \sin t$$

e questa è la parametrizzazione in senso antiorario, infatti si ha:

$$t = 0 \rightarrow x = x_0 + a, \quad y = y_0$$
$$t = \pi/2 \rightarrow x = x_0, \quad y = y_0 + b$$
$$t = \pi, \quad \rightarrow x = x_0 - a, \quad y = y_0$$

.........

Parametrizzazione in senso orario:

$$x = x_0 + a \cos t, \quad y = y_0 - b \sin t$$

Esercizio 5.11

Calcolare l’integrale

$$\int_\alpha z \, ds$$

dove

$$\alpha = \{x^2 + y^2 + z^2 = 1 \land x + y = 1, \quad z \geq 0\}.$$

La curva è l’intersezione di due superfici: una sfera e un piano.

Dalla seconda equazione ricavo $y = 1 - x$, e sostituendo nella prima equazione:

$$x^2 + (1-x)^2 + z^2 = 1$$
$$2x^2 - 1 - 2x + z^2 = 1$$
$$2x^2 - 2x + z^2 = 0$$

Uso il metodo del completamento dei quadrati per far comparire l’equazione di un’ellisse:
\[2(x^2 - x + 1/4 - 1/4) + z^2 = 0 \]
\[2(x - 1/2)^2 - 2 \cdot 1/4 + z^2 = 0 \]
\[2(x - 1/2)^2 + z^2 = 1/2 \]
\[\frac{(x - 1/2)^2}{1/4} + \frac{z^2}{1/2} = 1 \]

e ci si riconduce all’esercizio precedente con \((x_0, z_0) = (1/2, 0)\) , \(a^2 = 1/4\) e
\(b^2 = 1/2\).

Siccome \(y = 1 - x\) si ha \(y = 1/2 - 1/2 \cos t\).

Si ottiene la parametrizzazione:
\[
\begin{cases}
 x = 1/2 + 1/2 \cos t \\
 y = 1/2 - 1/2 \cos t \\
 z = \sqrt{2} \sin t
\end{cases}
\]
e imponendo la condizione \(z \geq 0\) si ha \(\sin t \geq 0\) e quindi \(t \in [0, \pi]\).

\[x'(t) = -1/2 \sin t, \quad y'(t) = 1/2 \sin t, \quad z'(t) = \sqrt{2}/2 \cos t \]
\[ds = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt \]
\[= \sqrt{1/4 \sin^2 t + 1/4 \sin^2 t + 1/2 \cos^2 t} = \sqrt{2}/2 \, dt \]

Allora:
\[\int_0^\pi z \, ds = \]
\[\int_0^\pi \sqrt{2}/2 \sin t \sqrt{2}/2 \, dt = 1/2 \int_0^\pi \sin t \, dt = 1/2 [\cos t]_0^\pi = 1/2 \cdot (-2) = -1 \]

Esercizio 5.12

Sia \(\alpha\) una curva tale che:
\[\alpha = \{x^2 + y + z = 2\} \cap \{xy + z = 1\} \]
con estremi \((-1/2, 1/2, 5/4)\) e \((\sqrt{2} - 1/2, \sqrt{2} + 1, 3/4)\). Calcolare la lunghezza della curva.

Per trovare una parametrizzazione della curva devo risolvere il sistema:
\[
\begin{cases}
 x^2 + y + z = 2 \\
 xy + z = 1
\end{cases}
\]
Dalla seconda equazione ricavo \(z = 1 - xy\), e sostituendo nella prima:
\[x^2 + y + 1 - xy = 2 \\
x^2 + y - xy = 1 \\
y - xy = 1 - x^2 \\
y \cdot (1 - x) = (1 - x) \cdot (1 + x) \quad \text{equazione*} \]

Se \(x = 1 \), l’equazione è soddisfatta per ogni \(x \) e di conseguenza si ottiene \(z = 1 - xy = 1 - y \).

Allora la retta di equazioni \(\alpha_0 = \{x = 1, y = t, z = 1 - t\} \) soddisfa l’equazione definitoria di \(\alpha \).

Suppongo invece \(x \neq 1 \), allora possiamo dividere l’equazione * per \(1 - x \) e si ottiene: \(y = 1 + x \). Risostituendo nell’espressione di \(z \) si ha:

\[z = 1 - xy = 1 - (1 + x) \cdot x = 1 - x - x^2 \]

e quindi, per \(x \neq 1 \) la curva ha la parametrizzazione:

\[\alpha_1 = \{x(t) = t, y(t) = 1 + t, z(t) = 1 - t - t^2\}. \]

Si nota subito che \(x(t) \) è crescente per \(x \neq 1 \), e che gli estremi della curva \(x_1 = -1/2 \) e \(x_2 = \frac{\sqrt{2} - 1}{2} \) sono minori di 1. Quindi, se \(-1/2 < t < \frac{\sqrt{2} - 1}{2}\) allora \(x(t) \neq 1 \), ed è immediato verificare che:

\[\alpha_1(-1/2) = (-1/2, 1/2, 5/4) \quad \text{primo estremo} \]

\[\alpha_1\left(\frac{\sqrt{2} - 1}{2}\right) = \left(\frac{\sqrt{2} - 1}{2}, \frac{\sqrt{2} + 1}{2}, 3/4\right) \quad \text{secondo estremo} \]

Quindi se considero la parametrizzazione con \(t \) che varia tra gli estremi, ho il sostegno della curva parametrizzata da \(\alpha_1 \) mentre \(\alpha_0 \) non viene coinvolta. In conclusione:

\[\alpha = \{x(t) = t, y(t) = 1 + t, z(t) = 1 - t - t^2, \quad -1/2 \leq t \leq \frac{\sqrt{2} - 1}{2}\} \]

Per calcolare la lunghezza, si ha:

\[\alpha'(t) = \frac{ds}{dt} = [x'(t) = 1, y'(t) = 1, z'(t) = -1 - 2t] \]

\[ds = \sqrt{1 + 1 + (1 + 2t)^2} \, dt = \sqrt{1 + 1 + 4t^2 + 4t} \, dt = \sqrt{4t^2 + 4t + 3} \, dt = 2\sqrt{t^2 + t + 3/4} \, dt = 2\sqrt{T} \]

\[L_\alpha = \int_{-1/2}^{\frac{\sqrt{2} - 1}{2}} 2\sqrt{(t+1/2)^2 + 1/2} \, dt \]

\[t + 1/2 = x \]

\[dt = dx \]

\[\int_0^{\sqrt{2}/2} \sqrt{x^2 + 1/2} \, dx \]
Integro per parti:

\[
\int \sqrt{x^2 + 1/2} \, dx =
\]

\[f(x) = x, \; f'(x) = 1\]
\[g(x) = \sqrt{x^2 + 1/2}, \; x' = \frac{x}{\sqrt{x^2 + 1/2}}\]

\[
\int \sqrt{x^2 + 1/2} \, dx =
\]

\[= x \sqrt{x^2 + 1/2} - \int \frac{x^2}{\sqrt{x^2 + 1/2}} \, dx\]

e aggiungendo e togliendo 1/2:

\[
= x \sqrt{x^2 + 1/2} - \int \frac{x^2 + 1/2}{\sqrt{x^2 + 1/2}} \, dx + \int \frac{1}{2 \sqrt{x^2 + 1/2}} \, dx =
\]

e tenendo conto del fatto che \(\frac{x^2 + 1/2}{\sqrt{x^2 + 1/2}} = \sqrt{x^2 + 1/2}\) si ha:

\[
x \sqrt{x^2 + 1/2} - \int \sqrt{x^2 + 1/2} \, dx + \int \frac{1}{2 \sqrt{x^2 + 1/2}} \, dx =
\]
ed eguaagliando al primo membro:

\[
\int \sqrt{x^2 + 1/2} \, dx = x \sqrt{x^2 + 1/2} - \int \sqrt{x^2 + 1/2} \, dx + \int \frac{1}{2 \sqrt{x^2 + 1/2}} \, dx =
\]

\[
2 \int \sqrt{x^2 + 1/2} \, dx = x \sqrt{x^2 + 1/2} + \int \frac{1}{2 \sqrt{x^2 + 1/2}} \, dx =
\]

\[
\int \sqrt{x^2 + 1/2} \, dx = x 1/2 \sqrt{x^2 + 1/2} + 1/4 \int \frac{1}{\sqrt{x^2 + 1/2}} \, dx =
\]
e l’integrale al secondo membro è uguale al settore coseno iperbolico:

\[
x = \sqrt{2}/2 \cosh t
\]

\[
dx = \sqrt{2}/2 \sinh t \, dt
\]

\[
\text{sett sinh} = \log(1 + \sqrt{x^2 + 1})
\]

\[
\int \sqrt{x^2 + 1/2} \, dx = x 1/2 \sqrt{x^2 + 1/2} + \frac{1}{4\sqrt{2}} \log(1 + \sqrt{x^2 + 1}) =
\]

Si risostituisce poi quest’espressione in \(L_n\) e la si valuta tra gli estremi 0 e \(\sqrt{2}/2\).

Esercizio 5.13

Calcolare:
\[\int_\alpha \sqrt{1 + 4x^2 z^2} \, d\sigma \]
dove
\[
\alpha = \{ y^2 + z^2 = 1 \} \cap \{ y^2 = x \}.
\]
con proiezione sul piano \((y,z)\) che è una curva semplice orientata in senso orario.
Si richiede che la circonferenza \(y^2 + z^2 = 1\) sia percorsa una sola volta in senso orario, quindi le equazioni parametriche sono:
\[
y(t) = \cos t, \quad z(t) = -\sin t, \quad 0 < t < \pi
\]
Inoltre
\[
x(t) = y(t)^2 \quad \longrightarrow \quad x(t) = \cos^2 t
\]
\[
\alpha' = [x'(t) = -2 \cos t \sin t, \quad y'(t) = -\sin t, \quad z'(t) = -\cos t]
\]
\[
ds = \sqrt{4 \cos^2 t \sin^2 t + \sin^2 t + \cos^2 t} \, dt = \sqrt{4 \cos^2 t \sin^2 t + 1} \, dt
\]
\[
I = \int_\alpha \sqrt{1 + y^2 z^2} \, ds = \int_0^{2\pi} \sqrt{1 + 4 \cos^2 t \sin^2 t} \times \sqrt{1 + 4 \cos^2 t \sin^2 t} \, dt
\]
\[
I = \int_0^{2\pi} 1 + 4 \cos^2 t \sin^2 t \, dt = \int_0^{2\pi} 1 + 4 \cos^2 t - 4 \cos^4 t \, dt
\]
Integro per parti \(\cos^4 t\) :
\[
\int \cos^4 t \, dt = \int \cos^3 t \cos t \, dt =
\]
\[
= \cos^3 t \sin t + \int 3 \cos^2 t \sin^2 t \, dt =
\]
\[
= \cos^3 t \sin t + 3 \int \cos^2 t \, dt - 3 \int \cos^4 t \, dt =
\]
ed eguagliando al primo membro:
\[
\int \cos^4 t \, dt = 1/4 \cos^3 t \sin t + 3/4 \int \cos^2 t \, dt
\]
e sostituendo la primitiva trovata in \(I\) :
\[
I = \int_0^{2\pi} 1 + 4 \cos^2 t \, dt - 4\{[1/4 \cos^3 t \sin t]_0^{2\pi} + 3/4 \int \cos^2 t \, dt\} =
\]
\[
I = \int_0^{2\pi} 1 + \cos^2 t \, dt =
\]
\[
I = \int_0^{2\pi} 1 + (1 + \cos(2t))/2 \, dt =
\]
\[I = \int_0^{2\pi} 3/2 + \cos(2t)/2 \, dt = \]
\[= \left[\frac{3}{2}t + \frac{1}{4}\sin(2t) \right]_0^{2\pi} = \frac{3}{2}2\pi = 3\pi \]

Osservazione 5.2

Data una curva in coordinate polari della forma \(\rho = \phi(\theta) \) si ricorda che

\[x = \rho \cos \theta, \quad y = \rho \sin \theta \]

allora per scrivere le equazioni parametriche in coordinate cartesiane sostituiamo a \(\rho \phi(\theta) \) e ottengo:

\[x(\theta) = \phi(\theta) \cos \theta, \quad y(\theta) = \phi(\theta) \sin \theta \]

dove \(\theta \) è il parametro della curva.
Capitolo 6

Teorema della funzione implicita

6.1 Richiami teorici

Consideriamo l’equazione

\[g(X, Y) = 0 \quad \text{equazione} \]

con \(G: A \subset \mathbb{R}^{n+m} \to \mathbb{R}^m \). I punti di \(A \) sono della forma \(P = (X, Y) \) con \(X \in \mathbb{R}^n \), \(Y \in \mathbb{R}^m \). Si dice che l’equazione * definisce implicitamente la funzione \(Y = f(X) \) in un intorno di un punto \((X_0, Y_0)\) se sono soddisfatte tre condizioni:

1. \(g \) è di classe \(C^1 \).
2. \(g(X_0, Y_0) = 0 \)
3. esiste un intorno \(U(X_0) \) ed un’unica funzione \(f: U \to \mathbb{R}^m \) tale che \((X, f(X)) \in A\) per ogni \(X \in U \) e \(g(X, f(X)) = 0 \forall X \in U \).

In particolare, il teorema del Dini afferma che se le prime due condizioni valgono e se la matrice jacobiana della \(g \) rispetto alle variabili \(Y \) nel punto \((X_0, Y_0)\) è invertibile (condizione 3b), allora \(g(X, Y) \) definisce implicitamente la funzione \(Y = f(X) \) in un intorno di \((X_0, Y_0)\), \(f \) è di classe \(C^1(U) \) e la jacobiana della \(f \) valutata in \(X \) è definita dall’equazione:

\[J_f(X) = -[(J_g)_Y(X, f(X))]^{-1} \circ (J_g)_X(X, f(X)) \quad \text{equazione} ** \]

e questa relazione vale per ogni \(X \in U \).

6.2 Funzioni implicite

Esercizio 6.1
Sia data
\[F(x, y) = e^{x-y} + x^2 - y^2 - e(x + 1) + 1 \]
si verifichi che l’equazione
\[F(x, y) = 0 \]
definisce implicitamente \(y = f(x) \) in un intorno del punto \(x = 0 \) con \(f(0) = -1 \).
Si dimostri che \(x = 0 \) è un punto di minimo locale per \(f \).

Verifico che l’equazione \(F(x, y) = 0 \) definisce il grafico di una funzione nel punto \((0, -1)\), e quindi verifico le tre condizioni enunciate sopra:

1. \(F \) è di classe \(C^\infty \), (allora anche la funzione implicita lo è).
2. \[F(0, -1) = e - 1 - e + 1 = 0 \]
3. \[\frac{\partial F}{\partial y}(x, y) = -e^{x-y} - 2y \]
\[F_y(0, -1) = -e + 2 \neq 0 \]

Allora sono soddisfatte le ipotesi del teorema della funzione implicita.

Verifico che \(x = 0 \) è un punto di minimo. In questo caso, l’equazione ** che definisce \(J_f(X) \) diventa:

\[f'(x) = -\frac{F_x(x, f(x))}{F_y(x, f(x))} \]

quindi applico la formula in \(x = 0 \).

\[F_x = e^{x-y} + 2x - e, \quad F_x(0, -1) = e - e = 0 \]
\[F_y = -e^{x-y} - 2y, \quad F_y(0, -1) = -e - 2 \]

Quindi:

\[f'(0) = -\frac{1}{-2 - e} \neq 0 = 0 \]

e questa è una condizione necessaria affinché \(x = 0 \) sia un punto di minimo per \(f \). A questo punto, \(x = 0 \) è un punto di minimo se la derivata seconda è positiva, altrimenti è negativa.

Osservazione 6.1

Tenendo conto che \(F \) è regolare, ricaviamo la derivata seconda dalla condizione

\[F(x, f(x)) = 0 \]
Derivando la relazione si ottiene:

\[F_x(x, f(x)) + F_y(x, f(x)) \ast f'(x) = 0 \]

ed esplicitando \(f'(x) \):

\[f'(x) = -\frac{F_x(x, f(x))}{F_y(x, f(x))} \]

e si ricava l’equazione **. Derivando ulteriormente si può ricavare l’espressione della derivata seconda.

Considerando l’esempio:

\[F(x, f(x)) = 0 \rightarrow e^{x-f(x)} + x^2 - f(x)^2 - e(x-1) + 1 = 0 \]

e derivando rispetto a \(x \):

\[e^{x-f(x)} \ast (1 - f'(x)) + 2x - 2f(x)f'(x) - e = 0 \]

\[e^{x-f(x)} \ast (1 - f'(x)) + 2x - 2f(x)f'(x) - e = 0 \]

Derivando ulteriormente:

\[e^{x-f} \ast (1 - f')^2 - e^{x-f} \ast f'' + 2 - 2(f')^2 - 2ff'' = 0 \]

e valutando in \(x = 0 \), con \(f(0) = -1 \), e \(f'(0) = 0 \), otteniamo:

\[e - ef'' + 2 + 2f'' = 0 \]

\[\rightarrow f''(0) = -\frac{e + 2}{2 - e} = \frac{e + 2}{e - 2} > 0 \]

allora \(x = 0 \) è un minimo.

Esercizio 6.2

Sia \(G: \mathbb{R}^2 \rightarrow \mathbb{R} \) definita come:

\[G(x, y) = -xe^y + 2y - 1 \]

1. Sia \((x_0, y_0) \in \mathbb{R}^2\) tale che \(x_0 \leq 0 \) e \(G(x_0, y_0) = 0 \). E’ vero che \(G(x, y) = 0 \) definisce implicitamente \(y = f(x) \) in un intorno del punto \((x_0, y_0)\)?

2. Scrivere lo sviluppo di Taylor di ordine 2 della funzione \(y = f(x) \)-definita implicitamente da \(G(x, y) = 0 \) in un intorno del punto \((0, 1/2)\).

3. Trovare tutti i punti \((x, y)\) tali che \(G(x, y) = 0 \) ma in cui il teorema del Dini non garantisce l’esistenza di \(y = f(x) \).
1. Verifico se G soddisfa le ipotesi del teorema del Dini: sappiamo già che G è di classe C^∞ e che $G(x_0,y_0) = 0$. Allora il teorema del Dini è applicabile se $G_y(x_0,y_0) \neq 0$.

$$\frac{\partial G}{\partial y}(x,y) = -xe^y + 2$$

$$\frac{\partial G}{\partial y}(x_0,y_0) = -x_0e^{y_0} + 2$$

$x_0 \neq 0 \rightarrow -x_0e^{y_0} + 2 \geq 2 \neq 0$

Allora per ogni punto (x_0,y_0) con $x_0 \leq 0$ e $G(x_0,y_0) = 0$ è applicabile il teorema del Dini.

2. $(0,1/2)$ è soluzione di $G(x,y) = 0$ ed è della forma (x_0,y_0) con $x_0 \leq 0$. Allora per il punto 1 in un intorno di $(0,1/2)$ si ha

$$G(x,f(x)) = 0$$

Scriviamo lo sviluppo di Taylor di f: dobbiamo quindi ricavare le espressioni di $f'(0)$ e $f''(0)$.

$$G(x,f(x)) = 0 \rightarrow -xe^f + 2f - 1 = 0$$

Derivando una volta rispetto a x:

$$-xe^f f' - e^f + 2f' = 0$$

e tenendo conto che $f(0) = 1/2$ e $x = 0$:

$$-\sqrt{e} + 2f' = 0$$

$$f' = \frac{\sqrt{e}}{2}$$

Derivo ancora per ricavare f'':

$$-e^f f' - xe^f (f')^2 - xe^f f'' - e^f f' + 2f'' = 0$$

$$f'(0) = \sqrt{e}/2, f(0) = 1/2, x = 0\quad \rightarrow \quad -\sqrt{e}\sqrt{e}/2 - \sqrt{e}/2\sqrt{e} + 2f'' = 0$$

$$-e + 2f'' = 0$$

$$f''(0) = e/2$$

Si può quindi scrivere lo sviluppo di Taylor di ordine 2 associato a $f(x)$:

$$f(x) = f(0) + f'(0)x + f''(0)/2x^2$$

cioè

$$f(x) = 1/2 + \sqrt{e}/2x + e/4x^2$$

3. Voglio determinare punti in cui $G(x,y) = 0$ e in cui non sia applicabile il teorema del Dini, cioè tali che $G_y = 0$.

$$\frac{\partial G}{\partial y} = -xe^y + 2 = 0 \rightarrow x = 2 \cdot e^{-y}$$
Inoltre, siccome dev’essere $G(x, y) = 0$ si ha:

$$G(2e^{-y}, y) = 0$$

cioè

$$-2 + 2y - 1 = 0 \quad \rightarrow \quad y = \frac{3}{2}$$

e sostituendo nell’espressione che esprime x in funzione di y:

$$x = 2e^{-3/2}$$

quindi l’unico punto in cui il teorema di Dini non è applicabile e in cui $G(x, y) = 0$ è

$$P = (2e^{-3/2}, \frac{3}{2})$$

Esercizio 6.3

Verificare che il sistema

$$\begin{align*}
e^z + 3x - \cos y + y &= 0 \\
e^x - x - z + y - 1 &= 0
\end{align*}$$

definisce implicitamente una curva di equazioni parametriche

$$x = t, \quad y = y(t), \quad z = z(t)$$

in un intorno del punto $P = (0, 0, 0)$ e scrivere l’equazione della retta tangente alla curva in P.

In questo caso si ha una funzione $G: \mathbb{R}^3 \rightarrow \mathbb{R}^2$. Si vogliono esplicitare y e z in funzione di x.

Verifico che il sistema

$$\begin{align*}
g_1(x, y, z) &= e^z + 3x - \cos y + y = 0 \\
g_2(x, y, z) &= e^x - x - z + y - 1 = 0
\end{align*}$$

definisce una curva $(t, y(t), z(t))$.

Verifico le ipotesi del teorema del Dini:

1. $G: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ è di classe C^∞ in \mathbb{R}^3

2. Valutando G in $(0, 0, 0)$ si ha:

$$g_1(0, 0, 0) = 1 - \cos 0 = 0, \quad g_2(0, 0, 0) = 1 - 0 - 0 - 1 = 0$$

quindi $G(0, 0, 0) = 0$.

3. Per verificare la terza condizione scrivo la matrice:

$$G_{y,z}(x, y, z) = \left(\begin{array}{cc} \frac{\partial g_1}{\partial y} & \frac{\partial g_1}{\partial z} \\ \frac{\partial g_2}{\partial y} & \frac{\partial g_2}{\partial z} \end{array} \right)$$
\[
G_{y,z}(x, y, z) = \begin{pmatrix} \sin y + 1 & e^z \\ 1 & -1 \end{pmatrix}
\]
\[
G_{y,z}(0, 0, 0) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]
\[
det(J_f)_{y,z} = -2 \neq 0
\]

Allora il teorema della funzione implicita è applicabile, ed è possibile definire la curva:

\[
\gamma(t) = (x = t, y = y(t), z = z(t))
\]

Osservazione 6.2

La retta tangente alla curva passa per \((x_0, y_0, z_0)\), e ha coefficiente angolare \(((\gamma_1)'(t), (\gamma_2)'(t), (\gamma_3)'(t))\), quindi ha equazione:

\[
\begin{align*}
x &= x_0 + t \\
y &= y_0 + y'(t) \cdot t \\
z &= z_0 + z'(t) \cdot t
\end{align*}
\]

Tenendo conto che \((x_0, y_0, z_0) = (0, 0, 0)\) si ha:

\[
\begin{align*}
x &= t \\
y &= y'(t) \cdot t \\
z &= z'(t) \cdot t
\end{align*}
\]

Ponendo \(h(x) = (f(x), g(x))\) per la sua derivata si ha:

\[
h'(x) = (J_g)_{y,z}^{-1}(x, y(x), z(x)) \circ (J_g)_x(x, y(x), z(x))
\]
\[
\frac{\partial g_1}{\partial x}(0, 0, 0) = 3
\]
\[
\frac{\partial g_2}{\partial x}(0, 0, 0) = (e^x - 1)(0, 0, 0) = 1 - 1 = 0
\]

Quindi

\[
[(J_G)_x] = \begin{pmatrix} 3 \\ 0 \end{pmatrix}
\]

Invece

\[
(J_G)_{y,z}(0, 0, 0) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]
\[
det(J_g)_{y,z} = -2
\]
\[
((J_G)_{y,z})^{-1} = -1/2 \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}
\]
\[(J_G)_{y,z}^{-1} = 1/2 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]

\[H'(0) = -1/2 \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \end{pmatrix}\]

ed è il vettore \((-3/2, -3/2)\).
Allora la retta tangente ha equazioni:

\[
\begin{cases}
 x = t \\
y = -3/2t \\
z = -3/2t
\end{cases}
\]

Osservazione 6.3

Alternativamente, senza procedere con le matrici, si considera il sistema:

\[
\begin{align*}
g_1(x, y(x), z(x)) &= 0 \\
g_2(x, y(x), z(x)) &= 0
\end{align*}
\]

Derivando ottengo:

\[
\nabla g_1(x, y(x), z(x)) \cdot (1, y'(x), z'(x)) = 0
\]

\[
\nabla g_2(x, y(x), z(x)) \cdot (1, y'(x), z'(x)) = 0
\]

e valutando l’espressione in \(x = 0\) trovo un sistema lineare in \(y'(0)\) e \(z'(0)\).

Esercizio 6.4

E’ data l’equazione:

\[g(x, y, z) = x^2 + 2x + e^y + y - 2z^3 = 0\]

Si richiede di verificare che in un intorno del punto \((-1, 0, 0)\) l’equazione

\[g(x, y, z) = 0\]

definisce implicitamente una superficie di equazione \(y = g(x, z)\). Scrivere l’equazione del piano tangente alla superficie nel punto \((-1, 0, 0)\).

Vogliamo esplicitare \(y\) in funzione di \(x\) e \(z\). Verifichiamo le ipotesi del teorema del Dini:

1. \(g\) è di classe \(C^\infty\)
2. \(g(-1, 0, 0) = 1 - 2 + 1 = 0\)
3. \(Si ha G_y = e^y + 1\) quindi \(G_y(-1, 0, 0) = 2 \neq 0\).
Allora il teorema della funzione implicita è applicabile e $G(x, y, z) = 0$ definisce implicitamente la superficie cercata.

Osservazione 6.4

Il piano tangente alla superficie nel punto $(-1, 0, 0)$ si trova immediatamente con la formula:

$$
\nabla G(x, y, z) \cdot (x - x_0, y - y_0, z - z_0) = 0
$$

in quanto passa per (x_0, y_0, z_0) ed è perpendicolare a ∇G, che è diretto come il versore normale al piano tangente.

In questo caso bisogna risolvere l’equazione:

$$
\nabla G(-1, 0, 0) \cdot (x + 1, y, z) = 0
$$

Allora:

$$
(0, 2, 0) \cdot (x + 1, y, z) = 0
\quad \rightarrow \quad 2y = 0
$$

cioè $y = 0$ è l’equazione del piano tangente nel punto $(-1, 0, 0)$.

Esercizio 6.5

Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che $f(0) = 0$. Verificare che il sistema:

$$
\begin{cases}
y^2 - z^2 + \int_0^x f(t) \, dt = 0 \\
\log y - 2 \log z + x = 0
\end{cases}
$$

definisce implicitamente la curva:

$$
x = x, \ y = y(x), \ z = z(x)
$$

in un intorno del punto $(0, 1, 1)$.

Scrivere l’equazione della retta tangente alla curva nel punto $(0, 1, 1)$ e discutere la massima regolarità che si può garantire per la funzione implicita.

Verifico le ipotesi del teorema del Dini:

1. Siccome f è continua la funzione integrale è di classe C^1, quindi g è di classe C^1 in $\mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}^+$.

2. $g_1(0, 1, 1) = 0 + 1 - 1 = 0$

 $g_2 = \log 1 - 2 \log 1 + 0 = 0$
3. Per la terza ipotesi, vogliamo verificare che la matrice jacobiana rispetto alle variabili \(y, z \) della funzione \(G \) sia invertibile.

\[
(J_g)_{y,z}(x, y, z) = \begin{pmatrix}
2y & -2z \\
1/y & -2/z
\end{pmatrix}
\]

\[
(J_g)_{y,z}(0, 1, 1) = \begin{pmatrix}
2 & -2 \\
1 & -2
\end{pmatrix}
\]

\[
\det J_g = -4 + 2 = -2 \neq 0
\]

quindi la matrice è invertibile e il teorema del Dini è applicabile.

Massima regolarità garantita: Se \(G \) è di classe \(C^k \), la funzione implicita è di classe \(C^k \). In questo caso, senza ulteriori ipotesi \(g \) è al più di classe \(C^1 \), e lo stesso vale per la funzione implicita.

Retta tangente: Vogliamo trovare \(y'(x) \), \(z'(x) \). Vale la relazione:

\[
\begin{pmatrix}
y'(x) \\
z'(x)
\end{pmatrix} = -((J_g)_{y,z})^{-1}(0, 1, 1) \times (J_g)_x(0, 1, 1)
\]

Inverto la matrice trovata prima:

\[
((J_g)_{x,y})^{-1}(0, 1, 1) = -1/2 \times \begin{pmatrix}
-2 & 2 \\
1 & 2
\end{pmatrix}
\]

Invece:

\[
(J_g)_x(x, y, z) = (f(x), 1)
\]

e valutando in \((0, 1, 1)\), siccome \(f(0) = 0 \) ho il vettore colonna

\[
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\]

In conclusione, svolgendo il prodotto ottengo il vettore:

\[
1/2 \times (2, 2) = (1, 1)
\]

allora l’equazione della retta tangente è:

\[
\begin{cases}
x = t, \\
y = 1 + t, \\
z = 1 + t
\end{cases}
\]

Esercizio 6.6

Sia \(\gamma(t) = (x(t), y(t)) \) la curva definita implicitamente dal sistema
\[
\begin{align*}
\begin{cases}
e^t + \sin x + \log(1 + y) - 1 = 0 \\
\cos y - e^{tx} + 2t + 4x = 0
\end{cases}
\end{align*}
\]
in un intorno di \((0, 0)\). Si determini il versore tangente a \(\gamma\)
in \((0, 0, 0)\).
Il versore tangente ha espressione:
\[
T_\gamma(0, 0, 0) = \frac{\nabla F_1 \times \nabla F_2}{|\nabla F_1 \times \nabla F_2|}
\]
con
\[
\begin{align*}
F_1 &= e^t + \sin x + \log(1 + y) - 1 \\
F_2 &= \cos y - e^{tx} + 2t + 4x \\
\nabla F_1 &= (e^t, \cos x, \frac{1}{1+y}), \nabla F_1(0, 0, 0) = (1, 1, 1) \\
\nabla F_2 &= (-e^{tx}*x + 2, -e^{tx}*t + 4, -\sin y), \nabla F_2(0, 0, 0) = (2, 4, 0)
\end{align*}
\]
\[
\nabla F_1 \times \nabla F_2 = (-4, 2, 2) \\
|\nabla F_1 \times \nabla F_2| = \sqrt{16 + 4 + 4} = 2\sqrt{6}
\]
Quindi
\[
T_\gamma(0, 0, 0) = \frac{1}{2\sqrt{6}}(-4, 2, 2) = \frac{1}{\sqrt{6}}(-2, 1, 1)
\]
Esercizio 6.7

Si studi la funzione \(y = y(x)\) definita implicitamente dalla relazione
\[
\log(x^3y) + e^{xy} = 0.
\]
Questa relazione è ben definita se e solo se \(x^3y > 0\) e quindi se e solo se \(xy > 0\), cioè se \(x < 0\) e \(y < 0\) oppure per \(x > 0\) e \(y > 0\).
Per il teorema del Dini segue che:
\[
y'(x) = \frac{-F_x}{F_y}
\]
con
\[
F = \log(x^3y) + e^{xy} \\
F_y = \frac{x^3}{x^3y} + e^{xy}*x = 1/y + x*e^{xy} \\
y'(x) = \frac{3/x + y*e^{xy}}{1/y + x*e^{xy}}
\]
La funzione ottenuta è definita anch’essa per \(xy > 0 \), \(x \neq 0, y \neq 0 \) e

\[
\frac{1}{y} + x \cdot e^{xy} \neq 0
\]

cioè

\[
1 + xy \cdot e^{xy} \neq 0
\]

\[
xye^{xy} \neq -1
\]

e questo è sempre vero per \(xy > 0 \).

\[
y'(x) = \frac{y(3 + xy \cdot e^{xy})}{x(1 + xy \cdot e^{xy})}
\]

La derivata della funzione si annulla se \(y = 0 \) (ma qui la funzione non è definita), oppure quando

\[
3 + xy e^{xy} = 0
\]

\[
xy e^{xy} = -3
\]

e anche questo non è possibile se \(xy > 0 \), quindi la derivata della funzione non ha punti stazionari.

Inoltre, la derivata nel complesso è negativa, quindi la funzione \(y(x) \) è decrescente negli intervalli \((-\infty, 0)\) e in \((0, +\infty)\).

Supponiamo che

\[
L^+ = \lim_{x \to +\infty} f(x, y)
\]

sia finito, allora, in questo caso si ha necessariamente \(x > 0 \) e quindi segue che \(xy > 0 \) \(\longrightarrow \) \(y > 0 \). Allora, per \(x > 0, y > 0 \) la relazione che definisce \(y(x) \) si può riscrivere come:

\[
3 \log x + \log y + e^{xy} = 0
\]

\[
\longrightarrow 3 \log x + \log l^+ + e^{xl^+} = 0
\]

\[
\longrightarrow 3 \log x + e^{xl^+} = \log l^+
\]

ma questo non è possibile perché mentre il primo membro tende a infinito, il secondo membro è una quantità finita, allora si ha necessariamente \(l^+ = \infty \) e in particolare per monotonia \(l^+ = -\infty \). Analogamente, \(l^- = +\infty \).

Esercizio 6.8

Si studi la funzione \(y = y(x) \) definita implicitamente dalla relazione

\[
(1 - x + y)e^x + e^y - 1 = 0.
\]
1. *Derivata prima:* Ponendo

\[F = (1 - x + y)e^x + e^y - 1 \]

si ha:

\[F_x = e^x * (1 - x + y) + e^x * (-1) = e^x * (y - x) \]
\[F_y = e^x + e^y \]

quindi, per il teorema del Dini, la derivata della funzione definita implicitamente dalla relazione è:

\[y' = \frac{e^x * (y - x)}{e^x + e^y} \]

2. *Punti stazionari:* I punti stazionari della funzione sono quelli per cui:

\[e^x * (y - x) = 0 \]

e quindi i punti tali che \(y = x \). Sfruttando la relazione definitoria per trovare i punti della forma \((x, x)\). Deve valere:

\[(1 - x + x)e^x + e^x - 1 = 0 \quad \rightarrow \quad e^x + e^x - 1 = 0 \]
\[(1 - x + x)e^x = 1/2 \quad \rightarrow \quad x = \log(1/2) = -\log 2 \]

Allora l’unico punto \((x, x)\) tale che \(F(x, x) = 0 \) è \((-\log 2, -\log 2)\), ed è l’unico punto stazionario per la funzione.

3. *Positività della derivata:* La derivata è positiva per \(y < x \), e negativa per \(y > x \), cioè la funzione è decrescente quando sta sopra la retta \(y = x \) e crescente quando sta sotto questa retta.

4. *Limiti della funzione:* Supponiamo che

\[\ell^+ = \lim_{x \to +\infty} y(x) \]

sia finito, allora sostituendo nella relazione definitoria si avrebbe:

\[(1 - x + \ell^+)e^x + e^{\ell^+} - 1 = 0 \]
\[(1 - x + \ell^+)e^x = 1 - e^{\ell^+} \quad \text{relazione} \]
e si ha una contraddizione perché il primo membro tende a \(-\infty\) mentre il secondo membro è finito, quindi \(\ell^+ = +\infty \). Calcoliamo ora

\[\ell^- = \lim_{x \to -\infty} y(x) = \]

Supponiamo che \(\ell^- \) sia finito, allora considerando la relazione * in questo caso non si ha nessuna contraddizione, perché \(e^x \to 0 \), e quindi sia il primo che il secondo membro sono finiti. Anche il secondo membro dev’essere uguale a 0, e quindi si avrebbe:

\[e^{\ell^-} = 1 \]
e quindi

\[\ell^- = \log 1 = 0 \]

La funzione ha un asintoto orizzontale per \(y = 0 \).
5. **Derivata seconda**: Derivo due volte la relazione definitoria per trovare la derivata seconda:

\[
R' = e^z (1 - x + y - 1 + y') + e^y y' = 0.
\]
\[
R'' = e^z ((-x + y + y' - 1 + y' + y'') + e^y (y')^2 + e^y y'' = 0.
\]
\[
R''' = e^z ((-x + y + 2y' - 1) + e^y (y')^2 + e^y y'' + e^y y'' = 0.
\]

quindi

\[
y'' = -\frac{e^z ((-x + y + 2y' - 1) + e^y (y')^2)}{e^z + e^y}
\]

Valutando la derivata seconda in \((-\log 2, -\log 2)\) si ha:

\[
y''(-\log 2, -\log 2) = -\frac{1/2 * (-1) + 1/2 * 0}{1/2 + 1/2} = 1/2 > 0
\]

quindi \((-\log 2, -\log 2)\) è un punto di minimo per \(F\).

Esercizio 6.9

Sia \(f(x, y) = e^{2x-y} + \sin(x + y)\).

1. Si dimostri che \(\{(x, y) \in \mathbb{R}^2 : f(x, y) = 1\}\) in un intorno di \((0, 0)\) coincide con il grafico di una funzione \(x = g(y)\).

2. Si scriva lo sviluppo di Taylor del secondo ordine (con il restod di Peano) di \(g\) centrato in \(y = 0\).

3. Si verifichi che \(y = 0\) è un punto di massimo locale per \(g\).

Verifico le ipotesi del teorema del Dini. Pongo

\[F(x, y) = e^{2x-y} + \sin(x + y) - 1\]

1. \(F\) è di classe \(C^1\).

2. \((0, 0) \in Z_F\), infatti:

\[F(0, 0) = e^0 + \sin 0 - 1 = 1 - 1 = 0\]

3. \(F_x(0, 0) \neq 0\), infatti:

\[F_x = e^{2x-y} * 2 + \cos(x + y)\]
\[F_x(0, 0) = e^0 * 2 + \cos(0) = 2 + 1 = 3 \neq 0\]

allora esiste un intorno \(U\) di \((0, 0)\) tale che \(Z_F \cap U\) sia il grafico di una funzione \(g(y)\).

Derivando una volta la relazione \(e^{2x-y} + \sin(x + y) - 1 = 0\) rispetto a \(x\) ottengo

\[e^{2x-y} (2x' - 1) + \cos(x + y)(x' + 1) = 0\]
da cui si ottiene:

\[x' \cdot (2e^{2x-y} + \cos(x + y)) + \cos(x + y) - e^{2x-y} = 0 \]
\[x' \cdot (2e^{2x-y} + \cos(x + y)) = -\cos(x + y) + e^{2x-y} \]
\[x'(y) = \frac{-\cos(x + y) + e^{2x-y}}{2e^{2x-y} + \cos(x + y)} \text{ derivata prima} \]

e valutando in \(y = 0 \) otteniamo:

\[x'(0) = \frac{-\cos(0) + e^0}{2e^0 + \cos(0)} = 0 \]

Derivando due volte la relazione definitoria otteniamo:

\[e^{2x-y} \cdot [(2x' - 1)^2 + 2x''] - \sin(x + y) \cdot (x' + 1)^2 + \cos(x + y)x'' = 0 \]
e sostituendo le espressioni di \(y = 0, f(0) = x = 0, f'(0) = 0 \) otteniamo:

\[1 \cdot [1 + 2x''] + 1x'' = 0 \]
\[x'' + 2x'' + 1 = 0 \]
\[x''(0, 0) = 1/3 \]

Allora lo sviluppo di Taylor centrato in \(x = 0 \) di \(g \) è

\[g(y) = 0 + 0 \ast x + 1/3 \ast x^2 + o(x^2) = 1/3 \ast x^2 + o(x^2) \]

Osservo che \(g'(0) = 0 \), cioè \(y = 0 \) è un punto stazionario per la funzione, inoltre \(g''(0) = 0 \) e quindi \(y = 0 \) è un punto di minimo per \(g \).
Capitolo 7

Moltiplicatori di Lagrange

7.1 Richiami teorici

Vogliamo trovare punti di massimo e minimo per una funzione:

\[F(x_1, x_2, \ldots, x_n) \]

che sia vincolata dall’equazione:

\[G_j(x_1, \ldots, x_n) = 0 \]

per \(j = 1, \ldots, m \).

1. In primo luogo si esaminano i punti \(x_0 \in \mathbb{R}^n \) tali che la matrice che ha come righe i gradienti delle \(G_j \) non ha rango massimo. Questi punti si dicono punti singolari per il vincolo e si studiano a parte.

2. Sia \(x_0 \) un punto regolare per i vincoli. Se un punto è vincolato (di massimo o minimo), allora esistono \(m \) numeri reali \(\lambda_1, \ldots, \lambda_m \) tali che:

\[
\nabla F(x_1, \ldots, x_n) + \sum_{i=1}^{n} \lambda_j G_j(x_1, \ldots, x_n) = 0
\]

cioè i punti vincolati corrispondono ai punti critici della lagrangiana:

\[
L(x_1, \ldots, x_n, \lambda_1, \ldots, \lambda_m) = F(x_1, x_2, \ldots, x_n) - \sum_{j=1}^{m} \lambda_j G_j(x_1, \ldots, x_n)
\]

7.2 Moltiplicatori di Lagrange

Il vincolo è dato da:

\[
a = x + y + z, \ x > 0, \ y > 0, \ z > 0
\]

e devo calcolare il massimo della funzione:
\(f = xyz \)

Cerco punti stazionari della funzione:

\[
G(x, y, z, \lambda) = xyz + \lambda(x + y + z - a)
\]

Risolvo il sistema:

\[
\begin{align*}
g_x &= yz + \lambda = 0 \\
g_y &= xz + \lambda = 0 \\
g_z &= xy + \lambda = 0 \\
g_\lambda &= x + y + z - a = 0
\end{align*}
\]

Se \((x, y, z) \neq 0:\)

\[
\begin{align*}
\lambda &= -\frac{1}{yz} \\
\lambda &= -\frac{1}{xz} \\
\lambda &= -\frac{1}{xy} \\
x + y + z - a &= 0
\end{align*}
\]

Eguagliando la prima e la seconda equazione:

\[
\frac{1}{yz} = \frac{1}{xz}
\]

cioè

\[
\frac{1}{y} = \frac{1}{x}
\]

e quindi \(x = y\). Analogamente si ricava \(y = z\), quindi \(x = y = z\).

Siccome si ha:

\[
xyz = a
\]

si ha

\[
x = y = z = \sqrt[3]{a}
\]
Capitolo 8

Forme differenziali

8.1 Richiami teorici

1. Definiamo forma differenziale lineare una funzione \(\omega : E \to \mathbb{R} \) del tipo:

\[
\omega = f_1(x, y, z)dx + f_2(x, y, z)dy + f_3(x, y, z)dz
\]
con \(f_1, f_2, f_3 \) di classe \(C^1 \).

2. Sia \(\gamma \) una curva regolare parametrizzata come \((x(t), y(t), z(t))\), e supponiamo che \(\gamma^* \subset E \). Si definisce

\[
\int_\gamma \omega = \int_a^b f_1(x(t), y(t), z(t))x'(t) + f_2(x(t), y(t), z(t))y'(t) + f_3(x(t), y(t), z(t))z'(t) \, dt
\]

3. \(\omega \) si dice esatta in \(E \) se esiste una funzione \(\phi \in C^2(E) \) tale che:

\[
d\phi = \omega
\]

4. Vale il seguente teorema: Sia \(\omega \) di classe \(C^1(E) \) con \(E \) aperto connesso, allora: se \(\omega \) è esatta, cioè \(\omega = d\phi \) per una certa \(\phi \) regolare, allora per ogni curva regolare (a tratti) \(\gamma \) vale la formula:

\[
\int_\gamma \omega = \phi(r(b)) - \phi(r(a))
\]

dove le equazioni parametriche della curva sono date da \(r : (a, b) \to \mathbb{R}^3 \).\(\omega \) è esatta se e solo se per ogni curva chiusa regolare (a tratti) con sostegno contenuto in \(E \), si ha

\[
\int_\gamma \omega = 0
\]

5. \(\omega \) si dice chiusa se

\[
\begin{align*}
\frac{\partial f_3}{\partial y} &= \frac{\partial f_2}{\partial z} \\
\frac{\partial f_1}{\partial z} &= \frac{\partial f_3}{\partial x} \\
\frac{\partial f_2}{\partial x} &= \frac{\partial f_1}{\partial y}
\end{align*}
\]
6. Centre data una forma differenziale nel piano, essa è chiusa se
\[\frac{\partial g_1}{\partial y} = \frac{\partial g_2}{\partial x} \]

7. Se \(\omega \) è chiusa in un insieme \(E \) stellato rispetto a un punto, allora \(\omega \) è esatta in \(E \).

8. Se \(\omega \) è esatta esistono tre metodi per determinarne una primitiva; "Metodo 1" si tiene conto che, siccome \(\omega = d\phi \), si ha:
\[
\begin{cases}
\frac{\partial \phi}{\partial x} = f_1 \\
\frac{\partial \phi}{\partial y} = f_2 \\
\frac{\partial \phi}{\partial z} = f_3
\end{cases}
\]
e si risolve il sistema per derivazioni successive; "Secondo metodo" Supponiamo che esista un punto \((x_0, y_0, z_0) \in E\) tale che ogni punto \((x, y, z)\) si possa connettere ad \((x_0, y_0, z_0)\) percorrendo tre segmenti contenuti in \(E\) paralleli agli assi \(\gamma_x, \gamma_y, \gamma_z\), allora una primitiva è data dalla formula:
\[
\phi(x, y, z) = \int_{x_0}^{x} f_1(s, y_0, z_0) \, ds + \int_{y_0}^{y} f_2(x, t, z_0) \, dt + \int_{z_0}^{z} f_3(x, y, u) \, du
\]

"Terzo metodo" per definizione di insieme stellato esiste un punto che può essere collegato ad ogni altro punto dell'insieme attraverso un segmento parametrizzato come \((\gamma_1, \gamma_2, \gamma_3)\), allora una primitiva di \(\omega \) si calcola come:
\[
\phi(x, y, z) = \int_{a}^{b} f_1(\gamma_1, \gamma_2, \gamma_3)\gamma_1'(t) + f_2(\gamma_1, \gamma_2, \gamma_3)\gamma_2'(t) + f_3(\gamma_1, \gamma_2, \gamma_3)\gamma_3'(t) \, dt
\]

8.2 Calcolo di integrali curvilinei

Esercizio 8.1

Calcolare:
\[
\int_{\gamma} \omega
\]
con
\[
\omega = (y - z) \, dx + (z + x) \, dy + (x + y) \, dz
\]
e
\[
\gamma = \{ x(t) = 2 \cos t, \ y(t) = \sqrt{2} \sin t, \ z(t) = \sqrt{2} \sin t \}
\]
con \(0 \leq t \leq 2\pi\).

Per calcolare l'integrale richiesto basta applicare la definizione, quindi calcolo:
\[x'(t) = -2 \sin t, \quad y'(t) = \sqrt{2} \cos t = z'(t) \]

Allora:

\[
\int_\gamma \omega = \int_0^{2\pi} -[\sqrt{2} \sin t - \sqrt{2} \sin t] * 2 \sin t + (\sqrt{2} \sin t + 2 \cos t) \sqrt{2} \cos t + (2 \cos t + \sqrt{2} \sin t) * \sqrt{2} \cos t \, dt
\]

(Il primo termine è nullo)

\[
= \int_0^{2\pi} (\sqrt{2} \sin t + 2 \cos t + 2 \cos t + \sqrt{2} \sin t) \sqrt{2} \cos t \, dt =
\]

\[
= \int_0^{2\pi} 4 \sin t \cos t + 4 \sqrt{2} \cos^2 t \, dt =
\]

\[
= \int_0^{2\pi} 2 \sin(2t) \, dt + \int_0^{2\pi} 4 \sqrt{2} \cos^2 t \, dt =
\]

Il primo addendo è nullo, calcolo il secondo addendo:

\[
= 4 \sqrt{2} (1/2 (1 + \sin(2t)))_0^{2\pi} = 4 \sqrt{2} \pi
\]

Esercizio 8.2

Si stabilisca se la forma differenziale

\[\omega(x, y) = \frac{x}{1 + x^2 + y^2} \, dx - \frac{y}{1 + x^2 + y^2} \, dy \]

è esatta in \(\mathbb{R}^2 \). Si calcoli inoltre l’integrale di \(\omega \) sul cammino chiuso ottenuto percorrendo prima il segmento che congiunge \((0, 0)\) con \((1, 0)\), poi l’arco della circonferenza di centro \((0, 0)\) e raggio 1 compreso tra \((1, 0)\) e \((0, 1)\) (percorso in senso antiorario) e infine il segmento che congiunge \((0, 1)\) con \((0, 0)\).

Verifica dell’esattezza: Osservo che

\[
\frac{\partial f_1}{\partial y} = -\frac{x}{(1 + x^2 + y^2)^2} * 2y = \frac{-2xy}{(x^2 + y^2 + 1)^2}
\]

\[
\frac{\partial f_2}{\partial x} = \frac{2xy}{(1 + x^2 + y^2)^2}
\]

e la forma differenziale non è chiusa perché \(\frac{\partial f_1}{\partial y} \neq \frac{\partial f_2}{\partial x} \). Siccome \(\mathbb{R}^2 \) è un aperto stellato chiusura ed esattezza sono equivalenti, quindi \(\omega \) non è neanche esatta.

Calcolo dell’integrale: Parametrizzo la curva chiusa, che è unione di:

\[
\gamma_a = \{(x, y) \text{ t.c. } x = 0, y = t, t \in (0, 1)\}
\]

\[
\gamma_b = \{(x, y) \text{ t.c. } x = \cos t, y = \sin t, t \in (0, \pi/2)\}
\]
\[\gamma_c = \{(x, y) \text{ t.c. } x = 1 - t, y = 0, \ 0 < t < 1\}\]

\[
\int_\gamma \omega = I_1 + I_2 + I_3
\]

\[I_1 = \int_0^1 f_1(\gamma_a) * \gamma_{a,1} + f_2(\gamma_a) * \gamma_{a,2} \, dt = \int_0^1 \frac{t}{1 + t^2} \, dt
\]

\[= [-1/2 * \log(1 + t^2)]_0^1 = -1/2 * \log 2 = -\log \sqrt{2}
\]

\[I_2 = \int_0^{\pi/2} \cos t \, dt = \sin t \frac{\sin t}{1 + \cos^2 t + \sin^2 t} \cos t \, dt
\]

\[= \int_0^{\pi/2} -2 \cos t \sin t \, dt =
\]

\[= \int_0^{\pi/2} -\sin(2t) \, dt = [1/2 \cos(2t)]_0^{\pi/2} = 1/2 * (-1 - 1) = -1
\]

\[I_3 = \int_0^1 \frac{1 - t}{1 + (1 - t)^2} \, dt
\]

\[= [1/2 \log(1 + (1 - t)^2)]_0^1 = -\log \sqrt{2}
\]

\[I = -1 - 2 \log \sqrt{2} = -1 - \log 2
\]

Esercizio 8.3

Siano \(\Omega = \{(x, y) \in \mathbb{R}^2 : 2y + x > 0\}\) e

\[\omega : \Omega \rightarrow (\mathbb{R}^2)^* \text{ definita come}
\]

\[\omega(x, y) = \frac{y}{2y + x} \, dx + \left[\log(2y + x) + \frac{2y}{2y + x}\right] \, dy.
\]

Si calcoli \(\int_\gamma \omega\) dove \(\gamma : [0, \pi] \rightarrow \mathbb{R}^2\),

\[\gamma(t) = (\sin t, \frac{\cos t}{1 + t})\).

\[
\frac{\partial f_2}{\partial x} = 1
\]

\[= \frac{1}{2y + x} - \frac{2y}{(2y + x)^2}
\]

\[= \frac{2y + x - 2y}{(2y + x)^2} = \frac{x}{(2y + x)^2}
\]

Invece

\[
\frac{\partial f_1}{\partial y} = 1
\]

\[= \frac{1 * (2y + x) - 2y}{(2y + x)^2} = \frac{x}{(2y + x)^2}
\]

allora la forma differenziale è chiusa, e siccome \(\Omega\) è semplicemente connesso, \(\Omega\) è anche esatta.

Allora, prese due curve che hanno gli estremi in comune, tali che \(\gamma(a) = \eta(a)\) e \(\gamma(b) = \eta(b)\) si ha:
\[\int_{\gamma} \omega = \int_{\eta} \omega \]

Tenendo conto che \(\gamma(0) = (0, 1) e \gamma(\pi) = (0, \frac{e^\pi}{\pi+1}) \) invece di calcolare direttamente l’integrale sulla curva \(\gamma \), lo calcolo sulla curva più semplice \(\eta \), che ha in comune gli estremi con \(\gamma \) ed è definita come:

\[\eta: [0, \pi] \to \mathbb{R}^2 \]

tale che

\[\eta(t) = (0, 1 + t(\frac{e^\pi}{\pi} - \frac{1}{\pi} t)) \]

\[\eta(t) = (0, 1 + t(\frac{e^\pi - \pi - 1}{\pi(\pi + 1)})) = (0, 1 + tk) \]

con \(k = \frac{e^\pi - \pi - 1}{\pi(\pi + 1)} \).

\[\int_{\eta} \omega = \int_{0}^{\pi} \frac{1 + tk}{2(1 + tk) + 0} * 0 + [\log(1 + tk + 0) + \frac{2(1 + tk)}{2(1 + tk) + 0}] * k dt \]

\[= \int_{0}^{\pi} [\log(1 + tk) + 1] * k dt \]

\[= k \int_{0}^{\pi} \log(1 + tk) + 1 dt \]

\[= k\pi + k \int_{0}^{\pi} \log(1 + tk) dt \]

Integrando per parti:

\[= k\pi + k * \left\{[t * \log(1 + tk)]_{0}^{\pi} - \int_{0}^{\pi} \frac{t}{1 + kt} dt \right\} \]

\[= k\pi + k * \left\{[t * \log(1 + tk)]_{0}^{\pi} - 1/k \int_{0}^{\pi} \frac{kt}{1 + kt} dt \right\} \]

\[= k\pi + k * \left\{[t * \log(1 + tk)]_{0}^{\pi} - 1/k \int_{0}^{\pi} 1 - \frac{1}{1 + kt} dt \right\} \]

\[= k\pi + k * \left\{[t * \log(1 + tk)]_{0}^{\pi} - 1/k(t - 1/k * \log(1 + kt)]_{0}^{\pi} \right\} \]

\[= k\pi + [t * \log(1 + tk) - 1/k * t + 1/k^2 * \log(1 + kt)]_{0}^{\pi} \]

\[= \pi k + \pi * \log(1 + \pi k) - \pi/k + 1/k^2 * \log(1 + \pi k) \]

con

\[k = \left(\frac{e^\pi - \pi - 1}{\pi(\pi + 1)}\right). \]
8.3 Verifica dell’esattezza e calcolo di primitive

Esercizio 8.4

Date le forme differenziali:

\[\omega_1 = -zdx + ydydz \]
\[\omega_2 = 3x^2ydx + x^3dy - 1/z \]

con \(\omega_2 \) definita su \(\mathbb{R} \times (0, +\infty) \), verificare se sono esatte. In caso affermativo trovarne una primitiva.

Prima forma differenziale: Siccome \(\omega_1 \) è definita su un aperto stellato, se \(\omega_1 \) è esatta, allora è anche chiusa. Verifichiamo quindi se \(\omega_1 \) è chiusa:

\[\omega_1 = f_1dx + f_2y + f_3dz \]

Deve valere:

\[\frac{\partial f_1}{\partial z} = \frac{\partial x}{\partial f_3} \]

cioè \(y = -1 \), e siccome la prima condizione per la chiusura non vale \(\omega_1 \) non è chiusa quindi \(\omega_1 \) non è nemmeno esatta.

Seconda forma differenziale: Analogamente, verifico che \(\omega_2 = g_1dx + g_2dy + g_3dz \) è chiusa.

\[\frac{\partial z}{\partial g_1} = \frac{\partial g_3}{\partial x} \rightarrow 0 = 0 \]
\[\frac{\partial g_1}{\partial y} = \frac{\partial g_2}{\partial x} \rightarrow 3x^2 = 3x^2 \]
\[\frac{\partial g_2}{\partial z} = \frac{\partial y}{\partial g_3} \rightarrow 0 = 0 \]

allora tutte e tre le condizioni di chiusura sono soddisfatte quindi \(\omega_3 \) è chiusa in \(\mathbb{R}^2 \times (0, +\infty) \), inoltre \(\mathbb{R}^2 \times (0, \infty) \) è un insieme stellato rispetto a qualsiasi suo punto, allora la forma differenziale è anche esatta.

Cerco una primitiva per \(\omega_2 \) usando i tre procedimenti descritti sopra:

1. **Procedimento 1:** Sia \(\phi \) una primitiva di \(\omega_2 \), allora \(d\phi = \omega \) cioè \(\phi \) deve risolvere il sistema:

\[
\begin{align*}
\phi_x &= 3x^2y \\
\phi_y &= x^3 \\
\phi_z &= -1/z
\end{align*}
\]
e integrando la prima equazione:
\[\phi = \int 3x^2y \, dx = x^3y + C_1(y, z) \]

Derivo rispetto a \(y \) l’espressione di \(\phi \):
\[\phi_y = x^3 + \frac{\partial C_1(y, z)}{\partial y} \]

ma dalla seconda equazione, \(\phi_y = x^3 \), ed equagliando le due diverse espressioni per la derivata parziale:
\[x^3 + \frac{\partial C_1(y, z)}{\partial y} = x^3 \]
e questo è vero se e solo se:
\[\frac{\partial C_1}{\partial y} = 0 \]
cioè
\[C_1(y, z) = C_2(z) \]
e risostituendo nell’espressione di \(\phi \) l’espressione trovata per \(C_1 \):
\[\phi = x^3y + c_2(z) \]
e derivando rispetto a \(z \):
\[\phi_z = c_2'(z) \]
\[c_2'(z) = -1/z \]
e integrando:
\[c_2(z) = -\log z + C \]
quindi
\[\phi(x, y, z) = x^3y - \log z + C \]

2. **Procedimento 2**: Scelgo il punto \((0,0,1)\) in \(\mathbb{R}^2 \times (0, +\infty)\). Allora
\[
\phi(x, y, z) = \int_0^x [3x^2y](s, 0, 1) \, ds + \int_0^y [x^3](x, t, 1) \, dt + \int_1^z [-1/z](x, y, u) \, du
\]
\[\phi(x, y, z) = \int_0^y x^3 \, dt + \int_1^z -1/udu \]
\[\phi(x, y, z) = x^3y - \log z + C \]

3. **Procedimento 3**: Parametrizzo la curva che unisce \((0,0,1)\) a \((x, y, z)\):
\[\gamma = (tx, ty, 1 + t(z - 1)), \quad t \in [0, 1] \]
Calcoliamo:
\[\int_\gamma \omega = \]
\[f_1(tx, ty, 1 + t(z - 1)) = 3(tx)^2ty \]
\[f_2(tx, ty, 1 + t(z - 1)) = t^3x^3 \]

\begin{align*}
 f_3(tx, ty, 1 + t(z - 1)) &= -\frac{1}{1 + t(z - 1)} \\
 dx &= x, \ dy = y, \ dz = z - 1 \\
 \int_0^1 3t^2 x^3 t y x + x^3 t^3 y - \frac{z - 1}{1 + t(z - 1)} \ dt = \\
 \int_0^1 3x^3 y t^3 + x^3 t^3 y - \frac{z - 1}{1 + t(z - 1)} \ dt = \\
 \int_0^1 4x^3 y t^3 - \frac{z - 1}{1 + t(z - 1)} \ dt = \\
 [4x^3 y t^4/4 - \log|1 + t(z - 1)|]_0^1 = \\
 \phi(x, y, z) &= x^3 y - \log|z| + c
\end{align*}

Esercizio 8.5

Si determinino \(\alpha, \beta \in \mathbb{R} \) tali che la forma differenziale

\[\omega(x, y) = (2 \sin x \cos y + \alpha \cos x \sin y) \ dx + (\beta \cos x \sin y + \sin x \cos y) \ dy \]

sia esatta in \(\mathbb{R}^2 \). Per tali valori di determinino le primitive di \(\omega \).

\(\mathbb{R}^2 \) è un aperto stellato, quindi \(\omega \) è esatta se e solo se \(\omega \) è chiusa. Determino \(\alpha, \beta \) affinché \(\omega \) sia chiusa.

Ponendo \(\omega = f_1 dx + f_2 dy \) si ha:

\[\frac{\partial f_1}{\partial y} = -2 \sin x \sin y + \alpha \cos x \cos y \]
\[\frac{\partial f_2}{\partial x} = -\beta \sin x \sin y + \cos x \cos y \]

\(\omega \) è chiusa se e solo se

\[-2 \sin x \sin y + \alpha \cos x \cos y = -\beta \sin x \sin y + \cos x \cos y \]
\[(-2 + \beta) \sin x \sin y = (1 - \alpha) \cos x \cos y \]

e l’equazione è soddisfatta se \(\alpha = 1, \beta = 2 \), quindi ottengo la forma differenziale:

\[\omega(x, y) = (2 \sin x \cos y + \cos x \sin y) \ dx + (2 \cos x \sin y + \sin x \cos y) \ dy \]

Cerco la primitiva \(\phi \) risolvendo il sistema:

\[
\begin{cases}
\frac{\partial \phi}{\partial x} = f_1 = 2 \sin x \cos y + \cos x \sin y \\
\frac{\partial \phi}{\partial y} = f_2 = 2 \cos x \sin y + \sin x \cos y \\
\phi = -2 \cos x \cos y + \sin x \sin y + k_1(y) \\
\frac{\partial \phi}{\partial y} = 2 \cos x \sin y + \sin x \cos y = 2 \cos x \sin y + \sin x \cos y + \frac{\partial k_1(y)}{\partial y}
\end{cases}
\]
Capitolo 8. Forme differenziali

\[\frac{\partial k_2(y)}{\partial y} = 0 \]

\[k_2(y) = c \]

\[\phi(x, y) = -2 \cos x \cos y + \sin x \sin y + c \]

Esercizio 8.6

Trova una funzione \(\alpha(y) \) tale che la forma differenziale:

\[\omega = x y \alpha(y) dy + (y - x^2 \alpha(y)) \, dy \]

abbia una primitiva \(\phi(x, y) \) definita nel semipiano \(y \leq 0 \) e tale che \(\phi(0, -1) = 1 \).

1. Il semipiano è stellato, quindi \(\omega \) è esatta e ammette una primitiva se e solo se \(\omega \) è chiusa, quindi cerco \(\alpha(y) \) tale che \(\omega \) sia chiusa.

\[\omega = f_1(x, y) \, dx + f_2(x, y) \, dy \]

\(\omega \) è chiusa se e solo se:

\[\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x} \]

\[\rightarrow x y \alpha(y)' + x \alpha(y) = -2x \alpha(y) \]

\[x y \alpha(y)' = -3x \alpha(y) \]

e per \(x \neq 0 \):

\[y \alpha(y)' = -3 \alpha(y) \]

2. Per determinare \(\alpha \), risolvo l’equazione differenziale che ho ottenuto:

\[d\alpha = -3/y \alpha(y) \, dy \]

\[\frac{d\alpha}{\alpha} = -3/y \, dy \]

\[\log |\alpha| = -3 \log |y| + c \]

\[\log |\alpha| = \log |y|^{-3} + c \]

\[|\alpha| = e^{\log |y|^{-3} + c} \]

\[|\alpha| = e^{\log |y|^{-3} + \log c} \]

\[|\alpha| = c \cdot e^{\log |y|^{-3}} \]

\[|\alpha| = c \cdot |y|^{-3} \]

Scelgo per semplicità \(c = 1 \):

\[\alpha(y) = y^{-3} \]

3. sostituisco l’espressione di \(\alpha(y) \) nella forma differenziale e ottengo:

\[\omega = xy y^{-3} \, dy + (y - x^2 y^{-3}) \, dy \]

\[\omega = \frac{x}{y^3} \, dy + (y - \frac{x^2}{y^3}) \, dy \]
4. Cerco una primitiva della forma differenziale, scelgo come punto base \((0, -1)\)
\[
\phi(x, y) = \int_0^x s \, ds + \int_{-1}^y (t - \frac{x^2}{t^3}) \, dt
\]
\[
\phi(x, y) = x^2/2 + [t^2/2 + 1/2 \frac{x^2}{t^2}]_{-1}^y
\]
\[
\phi(x, y) = x^2/2 + y^2/2 - 1/2 + 1/2 \frac{x^2}{y^2} - 1/2x^2
\]
\[
\phi(x, y) = y^2/2 - 1/2 + 1/2 \frac{x^2}{y^2} + c
\]

5. Determino \(c\) in modo che la primitiva soddisfi la condizione \(\phi(0, -1) = 1\)
\[
\psi(0, -1) = 1/2 + c
\]
quindi
\[
1/2 + c = 1 \rightarrow c = 1/2
\]

6. Come verifica finale, posso derivare la primitiva e verificare che si ottiene \(\omega\).

Esercizio 8.7

Si determini una funzione \(h \in C^1(\mathbb{R})\) tale che la forma differenziale
\[
\omega(x, y) = (h(x)y - xy^2e^{-x^2}) \, dx + (h(x)(1 + x^2) + ye^{-x^2}) \, dy
\]
sia esatta in \(\Omega = \mathbb{R}^2\). Si determini quindi una primitiva di \(\omega\).

Determinazione della funzione \(h(x)\): L’esattezza della forma differenziale equi-
vale alla sua chiusura. Quindi impongo:
\[
\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}
\]
\[
\frac{\partial f_2}{\partial x} = h'(x) \ast (1 + x^2) + h(x) \ast 2x - 2xye^{-x^2}
\]
\[
\frac{\partial f_1}{\partial y} = h(x) - 2xye^{-x^2}
\]
ed eguagliando le derivate ottengo:
\[
h'(x) \ast (1 + x^2) + h(x) \ast 2x - 2xye^{-x^2} = h(x) - 2xye^{-x^2}
\]
\[
h'(x) \ast (1 + x^2) = h(x)(1 - 2x)
\]
\[
\frac{dh}{h} = \frac{1 - 2x}{1 + x^2}
\]
\[
\int \frac{dh}{h} = \int \frac{1 - 2x}{1 + x^2}
\]
\[
\begin{align*}
\log |h| &= \int -\frac{2x}{1+x^2} \, dx + \int \frac{1}{1+x^2} \, dx \\
\log |h| &= -\log(x^2+1) + \arctan x + C \\
|h| &= e^{\frac{1}{x^2+1} \arctan x} + C \\
h &= C \cdot e^{\frac{1}{x^2+1} \arctan x} \\
h &= C \cdot \frac{1}{x^2+1} \arctan x \\
\end{align*}
\]
e eponiamo \(C = 1 \), e sostituendo nella forma differenziale:
\[
\omega(x, y) = \left(\frac{1}{x^2+1} \arctan x \cdot y - xy^2e^{-x^2} \right) \, dx + \left(e^{\arctan x} + ye^{-x^2} \right) \, dy
\]

Ricerca della primitiva: integro a partire dal punto base \((0,0)\).

\[
\phi = \int_0^x f_1(t, 0) \, dt + \int_0^y f_2(x, u) \, du \\
\phi(x, y) = \int_0^x \frac{1}{t^2+1} \cdot e^{\arctan t} \, (0 - t \cdot 0^2e^{-t^2}) \, dt + \int_0^y (e^{\arctan x} + ue^{-x^2}) \, du \\
\phi(x, y) = [e^{\arctan x} \cdot u + e^{-x^2} \cdot u^2/2]_0^y \\
\phi(x, y) = e^{\arctan x} \cdot y + e^{-x^2} \cdot y^2/2
\]

Esercizio 8.8

Si determina una funzione \(g \in C^1\left(-\frac{x}{2}, \frac{x}{2}\right) \) tale che \(g(0) = 0 \) e la forma differenziale
\[
\omega(x, y) = (2xg(y) + g(y)) \, dx + (g^2(y) + 1)(x^2 + x + 5) \, dy
\]
sia esatta in \(\Omega = \mathbb{R} \times \left(-\frac{x}{2}, \frac{x}{2}\right)\). Si calcoli inoltre una primitiva di \(\omega \) in \(\Omega \).

\(\Omega \) è un aperto stellato, quindi chiusura ed esattessezza sono equivalenti. Dopo aver calcolato le derivate parziali:
\[
\frac{\partial f_1}{\partial y} = 2xg'(y) + g'(y) \\
\frac{\partial f_2}{\partial x} = (g^2(y) + 1) \cdot (2x + 1)
\]
impongo che la forma differenziale sia chiusa e ottengo l’equazione differenziale:
\[
2xg'(y) + g'(y) = (g^2(y) + 1) \cdot (2x + 1)
\]
Voglio quindi risolvere il problema di Cauchy:
\[
\begin{cases}
g(0) = 0 \\
2xg'(y) + g'(y) = (g^2(y) + 1) \cdot (2x + 1)
\end{cases}
\]
\[
\begin{aligned}
\begin{cases}
g(0) = 0 \\
g'(y)(2x + 1) = (g^2(y) + 1) * (2x + 1)
\end{cases}
\end{aligned}
\]
e per \(2x + 1 \neq 0\) :
\[
\begin{aligned}
\begin{cases}
g(0) = 0 \\
g'(y) = (g^2(y) + 1)
\end{cases}
\end{aligned}
\]
E risolvo l’equazione a variabili separabili:
\[
\frac{dg}{1 + g^2} = dy
\]
\[
\int \frac{dg}{1 + g^2} = \int dy
\]
\[
\arctan g = y + C
\]
\[
g = \tan(y + C)
\]
e siccome \(g(0) = 0\), si pone \(c = 0\). Sostituendo nell’espressione di \(\omega\):
Sostituendo \(g\) nell’espressione di \(\omega\) ottengo:
\[
\omega(x, y) = (2x + 1) \tan y \, dx + (\tan^2 y + 1)(x^2 + x + 5) \, dy
\]
L’insieme \(\Omega\) è stellato rispetto al punto \((1, 0)\). Allora una primitiva di \(\omega\) è data da:
\[
\int_1^x (2s + 1) * \tan 0 \, ds + \int_0^y (\tan^2 t + 1)(x^2 + x + 5) \, dt
\]
\[
(x^2 + x + 5) * [\tan t]_0^y = (x^2 + x + 5) * \tan y + c
\]

8.4 Forme differenziali definite su aperti non stellati e formule di Gauss-Green

8.4.1 Richiami teorici

1. Sia \(D \subset \mathbb{R}^2\) un aperto connesso, e supponiamo che \(\partial D\) sia unione di curve chiuse e semplici regolari e supponiamo che \(D\) sia decomponibile in un numero finito di insiemi semplici rispetto agli assi. Un dominio che soddisfa questi requisiti è un dominio ammissibile per il teorema di Gauss-Green.

2. Nelle ipotesi precedenti valgono le formule di Gauss-Green:
\[
\begin{aligned}
\int_D \frac{\partial f}{\partial x}(x, y) \, dx \, dy &= \int_D f \ast \nu_1 \, ds \quad = \int_{\partial^+ D} f \, dy \\
\int_D \frac{\partial f}{\partial y}(x, y) \, dx \, dy &= \int_{\partial D} f \nu_2 \, ds \quad = -\int_{\partial^+ D} f \, dx
\end{aligned}
\]
dove \(\partial^+ D\) è la frontiera di \(D\) orientata positivamente.
Esercizio 8.9

Considerando la forma differenziale

\[\omega = \frac{xdx + ydy}{x^2 + y^2} \]

dimostrare che \(\omega \) è esatta in \(\mathbb{R}^2 \setminus O \) senza calcolare esplicitamente una primitiva. \(\omega \) è esatta in \(\mathbb{R}^2 \setminus O \) se e solo se

\[\int_\gamma \omega = 0 \]

per ogni \(\gamma \) cammino chiuso e semplice con \(\gamma^* \subset \mathbb{R}^2 \setminus O \).

Facciamo le seguenti considerazioni:

1. La forma differenziale \(\omega \) è definita in \(\mathbb{R}^2 \setminus O \), ed è chiusa, infatti:

\[\frac{\partial f_2}{\partial x} = \frac{-2xy}{(x^2 + y^2)^2} = \frac{\partial f_1}{\partial y} \]

Sia \(\gamma \) un cammino chiuso e semplice che non avvolga l’origine, cioè la parte interna a \(\gamma \) non contiene l’origine. Allora posso circondare \(\gamma \) con un aperto che non contiene l’origine, e che posso scegliere stellato. Allora siccome \(\omega \) è esatta:

\[\int_\gamma \omega = 0 \]

per ogni \(\gamma \) tale che l’origine non appartenga alla parte interna della curva.

2. Dobbiamo invece dimostrare che

\[\int_\gamma \omega = 0 \]

per le curve che avvolgono l’origine. Allora cerco una famiglia di curve di questo tipo su cui l’integrale di \(\omega \) è nullo. Consideriamo le curve:

\[\gamma_r(t) = (r \cos t, r \sin t) \quad t \in [0, 2\pi] \]

cioè equazioni di circonferenze centrate nell’origine percorse in senso antiorario.

\[\int_\gamma \omega = \int_0^{2\pi} -r^2 \cos t \sin t + r^2 \sin t \cos t \frac{dt}{r^2} = 0 \]

3. Presa una curva qualsiasi che circonda l’origine, allora esiste un punto sulla curva che ha distanza minima rispetto all’origine, e la chiamo \(\rho \). Considero la circonferenza centrata nell’origine e di raggio \(\rho/2 \) che non interseca la curva esterna. Percorro \(\gamma \) in senso antiorario e la circonferenza in senso orario ed ottengo una curva chiusa, allora se considero

\[\{ \gamma \setminus C(0, \rho/2) \} \]
ottengo un dominio ammissibile per il teorema di Gauss-Green. Quindi:

\[\int_{\partial^+ D} \omega = \int_{\partial^+} (f_1 dx + f_2 dy) = \int_D \frac{\partial f_1}{\partial y} + \frac{\partial f_2}{\partial x} \, dx \, dy \]

ma l’integrando al terzo membro è nullo perché la forma differenziale è chiusa, e quindi anche \(\int_{\partial^+ D} \omega = 0 \).

4. Si conclude scrivendo che:

\[\partial^+ D = \gamma \setminus \gamma_r \]

quindi

\[\int_\gamma \omega - \int_\gamma_r \omega = 0 \]

ma \(\int_\gamma \omega = 0 \forall r \) per l’osservazione precedente e quindi \(\int_\gamma \omega = 0 \) per ogni curva chiusa in \(\mathbb{R}^2 \setminus O \).

Esercizio 8.10

Si discutano chiusura ed esattezza della forma differenziale

\[\omega : \mathbb{R}^2 \setminus \{(0, 0)\} \to (\mathbb{R}^2)^* \]

definita come

\[\omega(x, y) = -2 \frac{xy}{(x^2 + y^2)^2} \, dx + \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy. \]

Nel caso in cui \(\omega \) sia esatta, se ne determini una primitiva.

Verifìco prima la condizione di chiusura:

\[\frac{\partial f_1}{\partial y} = -2 \frac{x \ast (x^2 + y^2)^2 - xy \ast (x^2 + y^2) \ast 4y}{(x^2 + y^2)^4} \]
\[= -2 \frac{x^5 + xy^4 + 2x^3y^2 - 4x^3y^2 - 4xy^4}{(x^2 + y^2)^4} \]
\[= -2 \frac{x^5 - 2x^3y^2 - 3xy^4}{(x^2 + y^2)^4} \]
\[= -2x \frac{x^4 - 2x^2y^2 - 3y^4}{(x^2 + y^2)^4} \]
\[= -2x \frac{(x^2 - 3y^2)(x^2 + y^2)}{(x^2 + y^2)^4} \]
\[= -2x \frac{(x^2 - 3y^2)}{(x^2 + y^2)^3} = -2 \frac{x^5 - xy^4}{(x^2 + y^2)^4} \]

Invece
\[
\frac{\partial f_2}{\partial x} = \frac{2x \ast (x^2 + y^2)^2 - 2 \ast (x^2 + y^2) \ast 2x \ast (x^2 - y^2)}{(x^2 + y^2)^4} \\
= \frac{2x \ast (x^4 + y^4 + 2x^2y^2) - 4x \ast (x^4 - y^4)}{(x^2 + y^2)^4} \\
= \frac{2x^5 + 2xy^4 + 4x^3y^2 - 4x^5 + 4xy^4}{(x^2 + y^2)^4} \\
= -\frac{2x^5 + 6xy^4 + 4x^3y^2}{(x^2 + y^2)^4} \\
= -\frac{2x^5 - 3xy^4 - 2x^3y^2}{(x^2 + y^2)^4} \\
= -\frac{2x(x^2 + y^2)(x^2 - 3y^2)}{(x^2 + y^2)^4} \\
= -\frac{2x(x^2 - 3y^2)}{(x^2 + y^2)^3}
\]

allora la forma differenziale è chiusa.

Siccome \(\mathbb{R}^2 \setminus O \) non è un aperto stellato, chiusura ed esattezza della forma differenziale non sono equivalenti.

L’integrale di \(\omega \) su una qualsiasi curva che non avvolge l’origine è nulla, perché posso restringere \(\omega \) a un aperto contenente il sostegno della curva ma non contenente l’origine, che sia stellato, e in questo caso, siccome la forma differenziale è chiusa, è anche esatta.

Considero invece una famiglia di curve che avvolgono l’origine, ad esempio considero le circonferenze di raggio \(r \) e calcolo l’integrale di \(\omega \) su curve di questo tipo.

\[C_r = (\cos t, \sin t), \; t \in (0, 2\pi)\]

\[
\int_{C_r} \omega = \\
= \int_0^{2\pi} \frac{\cos t \sin t}{(\cos^2 t + \sin^2 t)^2} \sin t + \frac{\cos^2 t - \sin^2 t}{(\sin^2 t + \cos^2 t)^2} \ast \cos t \; dt.
\]

\[
= \int_0^{2\pi} 2 \cos t \sin t \sin t + (\cos^2 t - \sin^2 t) \cos t \; dt.
\]

\[
= \int_0^{2\pi} 2 \cos t \sin^2 t + \cos^3 t \; dt.
\]

\[
= \int_0^{2\pi} \cos t \sin^2 t + \cos^3 t \; dt.
\]

\[
= \int_0^{2\pi} \cos t (\sin^2 t + \cos^2 t) \; dt.
\]

\[
= \int_0^{2\pi} \cos t \; dt = [\sin t]_0^{2\pi} = 0
\]
allora l’integrale è nullo su tutte le circonferenze che avvolgono l’origine.

Considero una qualsiasi curva ϕ che avvolge l’origine e che sia chiusa: allora esisterà una circonferenza tale che il sostegno di ϕ contenga quello della circonferenza, e tale che l’intersezione tra l’esterno della circonferenza e l’interno di ϕ sia un dominio ammissibile per il teorema di Green. Allora:

$$\int_C \omega = \pm \int_{\phi} \omega$$

ma il primo integrale è nullo quindi l’integrale su ogni curva chiusa che avvolge l’origine è nullo. Segue quindi che ω è esatta.

Esercizio 8.11

Considero la forma differenziale ω:

$$\frac{(x - 1) \, dy - y \, dx}{(x - 1)^2 + y^2}$$

$$+ \frac{(x + 1) \, dy - y \, dx}{(x + 1)^2 + y^2}$$

$$+ \frac{x \, dy - (y - 1) \, dx}{x^2 + (y - 1)^2}$$

$$+ \frac{x \, dy - (y + 1) \, dx}{x^2 + (y + 1)^2}$$

trovare la primitiva di ω definita nel quadrato $(-1, 1) \times (-1, 1)$ e tale che $\psi(0, 0) = 0$.

Se pongo

$$\lambda = \frac{x \, dy - y \, dx}{x^2 + y^2}$$

allora posso riscrivere ω come:

$$\omega(x, y) = \lambda(x - 1, y) + \lambda(x + 1, y) + \lambda(x, y - 1) + \lambda(x, y + 1)$$

e trovare una primitiva di ω equivale a trovare primitive di λ.

λ è definita su un aperto non stellato $\mathbb{R}^2 \setminus O$, è chiusa ma non è esatta, quindi non ha una primitiva globale.

Considero λ nei quattro semipiani $x > 0$, $x < 0$, $y > 0$, $y < 0$.

1. Nel semipiano $x > 0$, si ha:

$$\lambda = -\frac{y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

$$\lambda = f_1(x, y) \, dx + f_2(x, y) \, dy$$
Allora una primitiva si trova integrando a partire dal punto base \((1, 0)\) e ponendo:

\[
\phi_1(x, y) = \int_1^x f_1(s, 0) \, ds + \int_0^y f_2(x, t) \, dt = 0 + \int_0^y \frac{x}{x^2 + t^2} \, dt = 0 + \int_0^y \frac{1}{x} \cdot \frac{1}{1 + (t/x)^2} \, dt = \arctan(y/x)
\]

2. Nel semipiano \(x < 0\) la primitiva di \(\lambda\) coincide con \(\phi_1\), e l’unica differenza è che non si può integrare a partire da \((1, 0)\) ma da \((-1, 0)\).

3. Nel semipiano \(y > 0\), integro partendo da \((1, 0)\) e ottengo:

\[
\phi_2(x, y) = \int_1^y f_2(0, t) \, dt + \int_0^x f_1(s, y) \, ds = 0 + \int_0^x \frac{-y}{x^2 + y^2} \, ds = 0 + \int_0^x \frac{1}{y} \cdot \frac{1}{(s/y)^2 + 1} \, ds = -\arctan(x/y)
\]
e questa è l’espressione della primitiva di \(\lambda\) nel semipiano \(y > 0\).

4. nel semipiano \(y < 0\) la primitiva di \(\lambda\) coincide con \(\phi_2\).

Riassumendo, la primitiva di \(\lambda\) è definita come:

\[
\psi(x, y) = \begin{cases}
\arctan(y/x) + c_1 & \text{se } x > 0 \\
\arctan(y/x) + c_2 & \text{se } x < 0 \\
-\arctan(x/y) + c_3 & \text{se } y > 0 \\
-\arctan(x/y) + c_4 & \text{se } y < 0
\end{cases}
\]

Osservazione 8.1

Nel primo quadrante, pongo \(y/x = t, t > 0\) e vogliamo dimostrare che:

\[
\arctan t = -\arctan 1/t + \pi/2
\]

Definiamo

\[
\phi(t) = \arctan t + \arctan 1/t
\]

Osserviamo che \(\phi(1) = \pi/2\) mentre la derivata

\[
\phi'(t) = \frac{1}{1+t^2} + \frac{1}{1+(1/t)^2} \cdot \left(-\frac{1}{t^2}\right)
\]
\[\frac{1}{1+t^2} - \frac{1}{1+t^2} = 1 \]

è sempre nulla, allora \(\phi \) è costante e vale sempre \(\pi/2 \), cioè

\[\arctan t + \arctan \frac{1}{t} = \frac{\pi}{2} \quad \rightarrow \quad \arctan t = \frac{\pi}{2} - \arctan \frac{1}{t}. \]

Per trovare le primitive di \(\omega \) basta sostituire a \(x, y \) le espressioni corrispondenti:

1. \(\lambda(x - 1, y) \) ha come punto singolare \((1,0)\) nel semipiano \(x > 0 \), e la sua primitiva è \(\arctan \frac{y}{x-1} \).

2. \(\lambda(x + 1, y) \) ha come punto singolare \((-1,0)\) nel semipiano \(x < 0 \) e ha come primitiva \(\arctan \frac{y}{x+1} \).

3. \(\lambda(x, y - 1) \) ha come punto singolare \((0,1)\) nel semipiano \(y > 0 \), e ha come primitiva \(-\arctan \frac{x}{y-1}\).

4. \(\lambda(x, y + 1) \) ha come punto singolare \((0,-1)\) nel semipiano \(y < 0 \) e ha come primitiva \(-\arctan \frac{x}{y+1}\).

Quindi, riassumendo:

\[\psi(x, y) = \arctan \frac{y}{x-1} + \arctan \frac{y}{x+1} - \arctan \frac{x}{y-1} - \arctan \frac{x}{y+1} + c \]

siccome cerco la primitiva che si annulla nell’origine, si pone \(c = 0 \).
Capitolo 9

Integrali multipli

9.1 Richiami teorici

1. Sia $D_1 \subset \mathbb{R}$ un sottoinsieme limitato. Diremo che D_1 è semplice rispetto all’asse y se si può scrivere:

$$D_1 = \{(x, y) \in \mathbb{R}^2 t.c. x \in (a, b) \ g_1(x) \leq y \leq g_2(x)\}$$

2. Sia $D_2 \subset \mathbb{R}^n$ limitato. D_2 si dice x-semblice se si può scrivere:

$$D_2 = \{(x, y) \in \mathbb{R}^2 t.c. c < y < d, \ g_1(y) \leq x \leq g_2(y)\}$$

3. Supponiamo che f sia una funzione integrabile su un insieme $D \subset \mathbb{R}^2$ e supponiamo che D sia semplice rispetto all’asse y. Allora l’integrale doppio di f su D si può calcolare come:

$$\int_a^b \left[\int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \right] \, dx$$

9.2 Integrali doppi

Esercizio 9.1

Calcolare l’integrale doppio su D della funzione

$$f(x, y) = \left(\frac{1}{1+x+y}\right)^2$$

con

$$D = \{(x, y) \in \mathbb{R}^2 t.c. |x| \leq 1, \ -1 \leq 2(x + y) \leq 2x^2\}$$

Studio del dominio D:

$$|x| \leq 1 \longrightarrow -1 \leq x \leq 1$$
\[-1 \leq 2(x + y) \rightarrow y \geq -1/2 - x\]
\[2(x + y) \leq 2x^2 \rightarrow y \leq x^2 - x\]

Questo significa che il dominio è delimitato ai lati dalle rette verticali \(x = \pm 1\), si trova sotto la parabola rivolta verso l’alto di vertice \((1/2, -1/4)\) e sopra la retta \(r\) passante per \((0, -1/2)\) e parallela alla bisettrice del secondo e quarto quadrante.

Non ci sono punti di intersezione tra la retta \(r\) e la parabola. Invece, la retta \(x = 1\) interseca la parabola in \((1, 0)\) e la retta \(r\) in \((1, -3/2)\), e la retta \(x = -1\) interseca la parabola in \((-1, 2)\) e la retta \(r\) in \((-1, 1/2)\).

Il denominatore si annulla se e solo se

\[y = -1 - x\]

ma questa retta, parallela a \(r\), non interseca il dominio \(D\).

Allora \(f\) è continua e integrabile su \(D\).

Calcolo dell’integrale:

\[I = \int_{-1}^{1} dx \left[\int_{-1/2}^{x^2-x} \left(\frac{1}{1 + x + y} \right)^2 dy \right]\]

Calcolo prima l’integrale interno, e cerco una primitiva di \(f = \frac{1}{(1+x+y)^2}\) considerando \(y\) come variabile:

\[I = \int_{-1}^{1} dx \left[-\frac{1}{1 + x + y} \right]_{x^2-x-1/2}^{x^2-x}\]

\[I = \int_{-1}^{1} \left[-(1 + x + x^2 - x)^{-1} + (-x - 1/2 + x)^{-1} \right] dx\]

\[I = \int_{-1}^{1} \left[-(1 + x^2)^{-1} - 2 \right] dx\]

\[I = \left[-\arctan x - 2x \right]_{-1}^{1} = -\pi/4 - 2 - \pi/4 - 2 = -\pi/2 - 4\]

Esercizio 9.2

Calcolare, dopo aver invertito l’ordine di integrazione,

\[\int_{0}^{1} y \left[\int_{-\sqrt{1-y^2}}^{\sqrt{y-1}} \frac{e^x - 1}{x} \, dx \right] dy\]

Osservo che

\[\lim_{x \to 0} \frac{e^x - 1}{x} = 1\]

allora la funzione è continua e integrabile.
Studio del dominio: Per poter invertire l’ordine di integrazione, è necessario riscrivere il dominio dato

\[D = \{ -\sqrt{1-y^2} < x < 1 + y, \ y \in [0,1] \} \]

come una regione \(y \)-semplice nella forma:

\[D = \{ (x, y) \text{ t.c. } x \in [a, b] \ y \in (g_1(x), g_2(x)) \} \]

Determino quindi \(a, b, g_1, g_2 \).

Dalla definizione di \(D \) ricavo che:

\[x \leq y - 1 \rightarrow y \geq 1 + x \]

quindi, siccome \(y \in [0,1] \), la disuguaglianza può essere soddisfatta solo per \(x \) negative.

Inoltre dev’essere:

\[x > -\sqrt{1-y^2} \]

e per \(x < 0 \) si ha:

\[-x < \sqrt{1-y^2} \]

per \(y \in [0,1] \) l’argomento della radice è positivo, e posso elevare al quadrato:

\[x^2 < 1 - y^2 \]
\[x^2 + y^2 < 1 \]

e il dominio è delimitato dalla semicirconferenza di raggio 1 e centro nell’origine.

Riassumendo, l’insieme sta nel secondo quadrante (\(x \) negative), ed è delimitato dal basso dalla retta \(y = x + 1 \) e dall’alto dalla semicirconferenza \(y = x^2 + 1 \).

Quindi \(g_1(x) = 1 + x \), e siccome

\[x^2 + y^2 \leq 1 \rightarrow y \geq -\sqrt{1-x^2}, \ \lor \ y \leq \sqrt{1-x^2} \]

si ha \(g_2(x) = \sqrt{1-x^2} \).

Gli estremi \(a \) e \(b \) dell’intervallo in cui varia \(x \) sono le ascisse dei punti di intersezione tra la retta \(y = 1 + x \) e la semicirconferenza, \(P_1(-1,0), P_2(0,1) \). Quindi \(a = -1, b = 0 \).

Quindi \(D \) si scrive come
$$D = \{(x, y) \text{ t.c. } x \in [-1, 0] \quad 1 + x \leq y \leq \sqrt{1 - x^2}\}$$

Calcolo dell’integrale:

\[
\begin{align*}
\int_{-1}^{0} \frac{e^x - 1}{x} & \left[\int_{1+x}^{\sqrt{1-x^2}} y \, dy\right] \, dx \\
\int_{-1}^{0} \frac{e^x - 1}{x} & \left[\left[\frac{y^2}{2}\right]_{1+x}^{\sqrt{1-x^2}}\right] \, dx \\
\int_{-1}^{0} \frac{e^x - 1}{x} & \left[1 - x^2 - (1 + x)^2\right] \, dx \\
\int_{-1}^{0} \frac{e^x - 1}{x} & \left[1 - x^2 - 1 - x^2 - 2x\right] \, dx \\
& \quad - 2\int_{-1}^{0} \frac{e^x - 1}{x} \left[x + 1\right] \, dx \\
& \quad - 2\int_{-1}^{0} (e^x - 1)(x + 1) \, dx \\
& \quad - 2\int_{-1}^{0} x \cdot e^x + e^x - x - 1 \, dx
\end{align*}
\]

Integro per parti \(x * e^x\):

\[
\int x \cdot e^x \, dx = x \cdot e^x - \int e^x \, dx = e^x \cdot (x - 1)
\]

e quindi sostituendo nell’integrale da calcolare:

\[
\begin{align*}
&= -2[e^x \cdot (x - 1) + e^x - x^2/2 - x]_1^0 \\
&= -2[e^x \cdot x - x^2/2 - x]_1^0 \\
&= -2[-e^{-1} + 1/2] = 2e^{-1} - 1
\end{align*}
\]

Esercizio 9.3

Calcolare l’area dell’insieme

\[
D = \{(x, y) \in \mathbb{R}^2 \text{ t.c. } x^2 \leq |y| \leq |x|\}
\]

Studio del dominio:

L’area di un insieme limitato di \(\mathbb{R}^2\) è data da:

\[
\int_D 1 \, dx \, dy
\]

Le disuguaglianze che definiscono \(D\) sono
\[|y| \geq x^2 \implies y \leq -x^2 \lor y \geq x^2 \]
\[|y| \leq |x| \implies y \leq |x| \lor y \geq -|x| \]

Si ricava inoltre \(x^2 < |x| \), quindi
\[x \geq x^2, \forall x \leq -x^2 \]
\[x \ast (1 - x) \geq 0, \forall (1 + x) \leq 0 \]

La prima equazione \(x \ast (1 - x) \geq 0 \) ha soluzioni \(0 \leq x \leq 1 \), e la seconda \(x \ast (x + 1) \leq 0 \) ha soluzione \(-1 \leq x \leq 0 \).

In conclusione \(D \) è delimitato dalle due rette verticali \(x = \pm 1 \), ed è formato da quattro spicchi, uno in ogni quadrante, delimitati da un arco di parabola e dalla retta \(y = \pm x \).

Siccome il dominio è simmetrico, basta calcolare l’area di uno spicchio e moltiplicarla per 4: la simmetria di \(D \) si deduce anche dalla definizione, infatti \((x, y) \in D \implies (-x, -y) \in D, (x, -y) \in D, (-x, y) \in D\).

Lo spicchio \(D_1 \) nel primo quadrante si può scrivere come regione \(y \)-semplice:
\[D_1 = \{(x, y) \in \mathbb{R}^2 \text{ t.c. } x^2 \leq y \leq x, \quad 0 < x < 1\} \]

Calcolo dell’integrale:
\[
4 \int_D 1 \, dx \, dy = 4 \int_0^1 \int_{x^2}^x 1 \, dy \, dx
= 4 \int_0^1 [x^2]_{x^2}^1 \, dx
= 4 \int_0^1 x - x^2 \, dx
= 4 \left[x^2/2 - x^3/3 \right]_0^1
= 4 \left[1/2 - 1/3 \right] = 2 - 4/3 = 2/3
\]

Esercizio 9.4

Calcolare
\[
\int_D \frac{x}{1 + y} \, dx \, dy
\]
con
\[D = \{(x, y) \in \mathbb{R}^2 \text{ t.c. } 0 \leq 2y \leq x^2 + y^2 \leq 9, \quad x \geq 0 \} \]

Studio del dominio: L’equazione \(x^2 + y^2 \leq 9 \) implica che \(D \) è un sottoinsieme di un cerchio \(C_1 \) di centro nell’origine e di raggio \(r = 3 \).

Invece
\[x^2 + y^2 \geq 2y \longrightarrow x^2 + y^2 - 2y \geq 0 \]

Usando i metodi del completamento del quadrato:

\[x^2 + y^2 - 2y + 1 \geq 1 \]
\[x^2 + (y-1)^2 \geq 1 \]

cioè i punti dell’insieme stanno all’esterno della circonferenza \(C_2 \) di centro \((0,1)\) e raggio 1, che interseca l’asse \(y \) in \((0,0)\) e \((0,2)\).

Siccome \(x \geq 0, y \geq 0 \) considero solo l’intersezione tra il dominio e il primo quadrante.

Spezzo il dominio in due parti: per \(0 < y < 2 \), il dominio è compreso tra gli archi di \(C_2 \) e \(C_1 \), mentre per \(2 < y < 3 \) il dominio è compreso tra la retta \(x = 0 \) e un arco di \(C_1 \). In particolare \(D \) è unione disgiunta di \(D_1 \) e \(D_2 \) con:

\[
D_1 = \{(x,y) \in \mathbb{R}^2 \mid 0 < y < 2, \sqrt{2y-y^2} \leq x \leq \sqrt{9-y^2}\}
\]
\[
D_2 = \{(x,y) \in \mathbb{R}^2 \mid 2 < y < 3, 0 \leq x \leq \sqrt{9-y^2}\}
\]

Calcolo dell’integrale: per la proprietà di additività dell’integrale:

\[
\int_{D_1 \cup D_2} \frac{x}{1+y} \, dx \, dy = \int_{D_1} \frac{x}{1+y} \, dx \, dy + \int_{D_2} \frac{x}{1+y} \, dx \, dy =
\]

Calcolo i due integrali separatamente:

\[
I_1 = \int_0^2 \frac{1}{1+y} \left[\int_0^{\sqrt{9-y^2}} x \, dx \right] \, dy
\]

L’integrale è ben definito perché il denominatore non si annulla in \(D_1 \).

\[
I_1 = \int_0^2 \frac{1}{1+y} \left[\frac{x^2}{2} \right]_{\sqrt{9-y^2}}^{2} \, dy
\]

\[
I_1 = \frac{1}{2} \int_0^2 \frac{1}{1+y} \left[9 - y^2 - 2y + y^2 \right] \, dy
\]

\[
I_1 = -\frac{1}{2} \int_0^2 \frac{2y}{1+y} \, dy
\]

\[
I_1 = -\frac{1}{2} \int_0^2 2 - \frac{11}{y + 1} \, dy
\]

\[
I_1 = -\frac{1}{2} [2y - 11 \log(y + 1)]^2_0 =
\]

\[
I_1 = -\frac{1}{2} [4 - 11 \log 3] = -2 + 11/2 \log 3
\]
Capitolo 9. Integrali multipli

\[I_2 = \int_2^3 \frac{1}{1+y} \cdot \left(\int_0^{\sqrt{9-y^2}} x \, dx \right) \, dy = \]

\[I_2 = \frac{1}{2} \int_2^3 \frac{9-y^2}{1+y} \, dy = \]

Eseguo la divisione:

\[\frac{y^2 - 9}{y+1} = \]

\[\frac{y^2}{y} = y, \quad q_1 \]

\[y^2 - 9 - y^2 - y = -9 - y, \quad r_1 \]

\[\frac{-y}{y} = -1, \quad q_2 \]

\[-y - 9 + y + 1 = -8, \quad r_2 \]

allora

\[\frac{y^2 - 9}{y+1} = (y-1) - \frac{8}{y+1} \]

\[I_2 = -\frac{1}{2} \int_2^3 \left(y - 1 - \frac{8}{y+1} \right) \, dy = \]

\[I_2 = -\frac{1}{2} \int_2^3 \left[y^2/2 - y - 8 \log(y+1) \right] \, dy = \]

\[I_2 = -\frac{1}{2} \cdot \left[9/2 - 2 - 3 + 2 - 8 \log 4 + 8 \log 3 \right] \]

\[I_2 = -3/4 + 4 \log 4 - 4 \log 3 \]

\[I = I_1 + I_2 = -2 + 11/2 \log 3 - 3/4 + 4 \log 4 - 4 \log 3 = -11/4 + 3/2 \log 3 + 4 \log 4 \]

Esercizio 9.5

Calcolare l’integrale doppio

\[\int_T x \cos y \, dx \, dy \]

dove \(T \) è il trapezio di vertici \((0, \pi/2)\), \((0, \pi)\), \((\pi/2, 0)\) e \((\pi/2, 3/2\pi)\).

Studio del dominio: Il dominio è una regione x- semplice, in cui \(x \in (0, \pi/2) \), mentre \(y \) è delimitata da due rette: dal basso è delimitata da:

\[y = -x + \pi/2 \]

mentre dall’alto è delimitata da \(y = x + \pi \).

Calcolo dell’integrale:

\[\int_0^{\pi/2} \left[\int_{-x + \pi/2}^{x + \pi} x \cos y \, dy \right] \, dx \]
\[\int_0^{\pi/2} \frac{[x \sin y]_0^{x+\pi/2}}{x+\pi/2} \, dx \]
\[\int_0^{\pi/2} x \sin(x + \pi) - x \sin(-x + \pi/2) \, dx \]
\[\int_0^{\pi/2} -x \sin x - x \sin(\pi/2 - x) \, dx \]

Integro i due addendi per parti:
\[\int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x \]
\[\int x \sin(x/2 - x) \, dx = x \cos(x/2 - x) - \int \sin(x/2 - x) \, dx \]
\[= x \cos(x/2 - x) - \cos(x/2 - x) \]
quindi tornando all’integrale di partenza
\[= -[-x \cos x + \sin x + x \cos(x/2 - x) - \cos(x/2 - x)]_0^{\pi/2} = \]
\[= -[1 + \pi/2 - 1] = -\pi/2 \]

9.3 Integrali doppi con cambio di variabili

Consideriamo \(I \subset \mathbb{R}^n \) limitato, e sia \(T: D \to T(D) \) un diffeomorfismo. Supponiamo di avere una funzione \(f \) integrabile su \(T(D) \), allora si può applicare la seguente formula per il cambio di variabili:
\[\int_{T(D)} f(x) \, dx = \int_D f(T(x)) | \det J_T(T^{-1}(x)) | \, dx \]

In realtà, per applicare la formula, basta che \(T \) sia un diffeomorfismo tra \(T \setminus N_1 \) e \(T_D \setminus N_2 \) con \(n_1, n_2 \) insiemi.

Esercizio 9.6

Si calcoli
\[\int_E \frac{y}{x^2 + y^2} \, dx \, dy, \]
dove \(E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \geq 4 \text{ e } x^2 + y^2 - 2x - 2y \leq 0\} \).

Studio del dominio: in base all’equazione \(x^2 + y^2 \geq 4 \), i punti devono stare all’esterno della circonferenza di centro nell’origine e raggio 2. Considero poi l’equazione:
\[x^2 + y^2 - 2x - 2y \leq 0 \]
\[\rightarrow x^2 - 2x + 1 + y^2 - 2y + 1 \leq 2 \]
quindi i punti devono stare all’interno della circonferenza di raggio $\sqrt{2}$ e centro in $(1,1)$.

In questo caso, per semplificare il calcolo dell’integrale, conviene passare a coordinate polari con la trasformazione T tale che

$$(\rho, \theta) \mapsto (\rho \cos \theta, \rho \sin \theta).$$

Quindi ponendo $E = T(D)$, si ha:

$$D = \{(\rho, \theta) \in \mathbb{R}^2 \text{ t.c. } \rho^2 \geq 4, \rho^2 - 2\rho \cos \theta - 2\rho \sin \theta \leq 0\}$$

$$\rho^2 \geq 4 \quad \Rightarrow \quad \rho \leq -2 \lor \rho \geq 2$$

Invece

$$\rho^2 - 2\rho \cos \theta - 2\rho \sin \theta \leq 0$$

$$\Rightarrow \quad \rho \leq 2 \cos \theta + 2 \sin \theta$$

Siccome il dominio sta nel primo quadrante $0 < \theta < \pi/2$.

Calcolo dell’integrale:

$$\int_E \frac{y}{x^2 + y^2} \, dx \, dy =$$

applicando la formula del cambio di variabili e aggiungendo il determinante jacobiano ρ:

$$\int_0^{\pi/2} \int_0^{2\cos \theta + 2\sin \theta} \frac{\rho \sin \theta}{\rho^2} \, \rho \, d\rho \, d\theta =$$

$$\int_0^{\pi/2} \int_0^{2\cos \theta + 2\sin \theta} \sin \theta \, d\rho \, d\theta =$$

$$\int_0^{\pi/2} \left[-\rho \cos \theta \right]_0^{2\cos \theta + 2\sin \theta} \, d\theta =$$

$$\int_0^{\pi/2} 2 \cos \theta \sin \theta + 2\sin^2 \theta \, d\theta =$$

$$\int_0^{\pi/2} \sin(2\theta) + (1 - \cos(2\theta)) \, d\theta =$$

$$\int_0^{\pi/2} -1/2 \cos(2\theta) + \theta/2 - \sin(2\theta)/4 \, d\theta =$$

$$\left[-1/2 \cos(2\theta) + \theta/2 - \sin(2\theta)/4\right]_0^{\pi/2} =$$

$$-1/2 - \pi/4 - 1/2 = -(1 + \pi)/4$$

Esercizio 9.7

Si calcoli
\[
\int_E \left(1 + x^2 ye^{x^2} \right) \, dx \, dy,
\]
dove \(E = \{(x, y) \in \mathbb{R}^2 : 2x \leq x^2 + y^2 \leq 4\} \).

Studio del dominio: Il dominio è racchiuso tra le circonferenze \(x^2 + y^2 \leq 4 \) e \(x^2 + y^2 \geq 2x \). I punti di intersezione tra le due circonferenze si determinano risolvendo il sistema:
\[
\begin{align*}
x^2 + y^2 &= 4 \\
x^2 + y^2 &= 2x
\end{align*}
\]
Sottraendo le due equazioni ottenso \(2x = 4 \), quindi \(x = 2 \) e l’unico punto di intersezione è \((2,0)\). Il dominio è simmetrico rispetto all’asse \(x \).

Calcolo dell’integrale: Considero l’integrale:
\[
\int_E \left(1 + x^2 ye^{x^2} \right) \, dx \, dy =
\]
che si spezza come
\[
\int_E 1 \, dx \, dy + \int_E x^2 ye^{x^2} \, dx \, dy =
\]
Nel secondo addendo l’integranda è dispari rispetto a \(y \), e viene integrata su un dominio simmetrico rispetto a \(y \), allora l’integrale vale 0. Rimane da calcolare solo il primo pezzo:
\[
\int_E 1 \, dx \, dy =
\]
In coordinate polari l’equazione che definisce il dominio diventa:
\[
2 \rho \cos \theta \leq \rho^2 \leq 4
\]
Quindi \(\rho^2 \leq 4 \implies \rho \leq 2 \), mentre \(2 \rho \cos \theta \leq \rho^2 \) implica \(2 \cos \theta \leq \rho \), cioè \(2 \cos \theta \leq \rho \leq 2 \). Inoltre
\[
2 \cos \theta \leq \rho \land \rho \leq 2 \implies \cos \theta \leq 1,
\]
quindi \(\theta \) varia in \((0, 2\pi)\) e calcolo l’integrale:
\[
\int_0^{2\pi} \int_{2\cos \theta}^2 \rho \, d\rho \, d\theta =
\]
\[
1/2 \int_0^{2\pi} |\rho^2|_{2\cos \theta}^2 \, d\theta =
\]
\[
2 \int_0^{2\pi} 1 - \cos^2 \theta \, d\theta =
\]
Capitolo 9. Integrali multipli

\[2 \int_0^{2\pi} 1 - (1 + \cos(2\theta))/2 \, d\theta = \]
\[\int_0^{2\pi} 1 + \cos(2\theta) \, d\theta = \]
\[= [\theta + 1/2 \sin(2\theta)]_0^{2\pi} = 2\pi \]

Esercizio 9.8

Calcolare l’integrale doppio

\[\int_D \frac{x^2 - 2y}{x^2 + y^2} \, dx \, dy \]
sull’insieme \(D = \{(x, y) \in \mathbb{R}^2 : \, 4 \leq x^2 + y^2 \leq 9\} \).

Studio del dominio: Il dominio è una corona circolare dove la circonferenza interna ha raggio \(r = 2 \) e quella esterna ha raggio \(R = 3 \), e passando a coordinate polari, integro sull’insieme

\[E = \{(\rho, \theta) \in \mathbb{R}^2 : \, 4 \leq \rho^2 \leq 9\}. \]

Quindi

\[\rho > 0 \land \rho^2 \leq 9 \rightarrow 0 \leq \rho \leq 3 \]
\[\rho^2 \geq 4 \rightarrow \rho \geq 2 \]

quindi complessivamente

\[2 \leq \rho \leq 3, \, 0 < \theta < 2\pi \]

Calcolo dell’intrale: ricordando di aggiungere il determinante jacobiano \(\det J_\xi = \rho \):

\[\int_D \frac{x^2 - 2y}{x^2 + y^2} \, dx \, dy = \]
\[= \int_E \rho^2 \cos^2 \theta - 2\rho \sin \theta \frac{d\theta \, d\rho}{\rho^2} \]
\[= \int_2^3 \left[\int_0^{2\pi} \rho^2 \cos^2 \theta - 2\rho \sin \theta \, d\theta \right] d\rho \]
\[= \int_2^3 \left[\frac{\rho \cos^2 \theta - 2\sin \theta \, d\theta} {x^2 + y^2} \right] d\rho \]

Cerco una primitiva di \(\cos^2 \theta \):

\[\int \cos^2 \theta \, d\theta = \int (1 + \cos(2\theta))/2 \, d\theta = \theta/2 + 1/4 \sin 2\theta \]

e tornando all’integrale:
\[= \int_2^3 \left[\rho(\theta/2 + 1/4 \sin(2\theta)) + 2 \cos \theta \right] d\rho\]
\[= \int_2^3 \pi \rho d\rho = \pi \left[\frac{\rho^2}{2} \right]_2^3 = 9\pi/2 - 4\pi/2 = 5\pi/2\]

Esercizio 9.9

Calcolare
\[\int_D e^{x+y} \, dx \, dy\]
con
\[D = \{(x, y) \in \mathbb{R}^2 \text{ t.c.} x \geq 0, y \geq 0, x + y \leq 2\}\]

Il dominio di integrazione è un triangolo in cui \(y \leq 2 - x\).

Introduciamo un cambio di coordinate lineari. Poniamo \(U = x - y\) e \(V = x + y\).

Dobbiamo calcolare il determinante jacobiano della funzione che manda \((x, y)\) in \((U, V)\).

\[
\begin{cases}
x - y = U \\
x + y = V
\end{cases}
\]

e sommando e sottraendo le due equazioni ottengo il sistema:

\[
\begin{cases}
U + V = 2x \\
V - U = 2y
\end{cases}
\]

\[x = (V + U)/2, \quad Y = (V - U)/2\]

\[J_T = \begin{vmatrix}
1/2 & 1/2 \\
-1/2 & 1/2
\end{vmatrix}\]

det \(J_T = 1/4 + 1/4 = 1/2 \neq 0\)

e siccome la trasformazione è lineare e det \(J_T \neq 0\), allora \(T\) è un diffeomorfismo.

Riscrivendo le equazioni in termini di \(U\) e \(V\):

\[x \geq 0 \rightarrow U + V \geq 0\]
\[Y \geq 0 \rightarrow V - U \geq 0,\]
\[y + x \geq 2 \rightarrow (U + V)/2 + (V - U)/2 \leq 2 \rightarrow V \leq 2\]

Nel piano \((U, V)\), il dominio è sempre un triangolo, delimitato però dalla retta orizzontale \(V < 2\) e dalle bisettrici.
Esprimendo U in funzione di V, si ha $-V \leq U \leq V$ con $0 \leq V \leq 2$, quindi calcolo l’integrale:

\[
\int_{-V}^{V} \left(\int_{-V}^{V} \frac{1}{2}e^{U/V} dU \right) dV = \int_{-V}^{V} \left(\frac{1}{2}V e^{U/V} \right)_0^V dV = \int_{-V}^{V} \frac{1}{2}V(e - 1/e) dV
\]

\[
\frac{1}{4}V^2(e - 1/e) = 4 \times 1/4 \times (e - 1/e) = e - 1/e
\]

9.4 Integrali tripli

9.4.1 Richiami teorici

Integrazione per fili Sia $D \subset \mathbb{R}^3$ un sottoinsieme limitato. Supponiamo che

\[
D = \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } (x, y) \in A \alpha(x, y) \leq z \leq \beta(x, y)\}
\]

Se f è integrabile su D, allora:

\[
\int_D f(x, y, z) \, dx \, dy \, dz = \int_A \left[\int_{\alpha(x, y)}^{\beta(x, y)} f^{xy}(z) \, dz \right] dx \, dy.
\]

Integrazione per strati In questo caso si calcola prima un integrale doppio e poi uno semplice.

Considero l’insieme E limitato. Supponiamo di sapere che

\[
E \subset \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } a \leq z \leq b\}
\]

(compreso tra due iperpiani).

Definisco gli insiemi

\[
E_h = \{(x, y, z) \in E \text{ t.c. } z = h\}
\]

ottenuti intersecando l’insieme E con un iperpiano di altezza h.

Allora

\[
\int_D f \, dx \, dy \, dz = \int_a^b \left[\int_{E_h} f(x, y, h) \, dx \, dy \right] dh
\]

Cambio variabili Sia D un aperto misurabile di \mathbb{R}^2 e sia $T: D \to T(D)$ una funzione. Sia T tale che $(u, v) \mapsto (x, y)$ con $x = \phi(u, v)$, $y = \psi(u, v)$.
Supponiamo che T sia di classe C^1 su tutto D con derivate parziali limitate, che T sia invertibile tra D e l’immagine $T(D)$, e supponiamo che il determinante jacobiano della trasformazione indicato con $\frac{\partial \phi}{\partial u}$ sia diverso da 0. Se f è integrabile in $T(D)$, allora:

$$\int_{T(D)} f(x, y) \, dx \, dy = \int_D f(\phi(u, v), \psi(u, v)) \cdot \left| \frac{\partial \phi, \psi}{\partial u, v} \right|(u, v) \, du \, dv$$

A parte in casi noti del cambio di variabile, non è facile ricavare le relazioni $x = \phi(u, v)$ e $y = \psi(u, v)$.

Esercizio 9.10

Calcolare l’integrale triplo:

$$\int_D x^2 + y^2 + z^2 \, dx \, dy \, dz$$

con

$$D = \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } x^2 + z^2 \leq 1, \quad y^2 + z^2 \leq 1\}$$

Studio del dominio: D è contenuto nell’intersezione tra i due cilindri:

- $C_1 = \{(x, y, z), \text{ t.c. } x^2 + z^2 = 1\}$, ruota attorno all’asse y
- $C_2 = \{(x, y, z), \text{ t.c. } y^2 + z^2 = 1\}$, ruota attorno all’asse x

Siccome z compare in tutte e due le equazioni, scelgo z come ultima variabile di integrazione; si possono esprimere x e y in funzione di z attraverso le equazioni:

$$-\sqrt{1-z^2} \leq x \leq \sqrt{1-z^2}$$
$$-\sqrt{1-z^2} \leq y \leq \sqrt{1-z^2}$$

Per determinare l’intervallo in cui varia z, osservo che:

$$x^2 > 0 \rightarrow z^2 \leq x^2 + z^2 \leq 1,$$

e si ha quindi $-1 \leq z \leq 1$.

Calcolo dell’integrale:

$$\int_{-1}^{1} \left[\int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} x^2 + y^2 + z^2 \, dy \right] \, dx \, dz$$

Integro prima rispetto a y:

$$\int_{-1}^{1} \left[\int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} [(x^2 + z^2)y + y^3/3]_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \, dx \right] \, dz$$
\[
\int_{-1}^{1} \left[\int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} 2(x^2 + z^2)\sqrt{1-z^2} + 2/3(1-z^2)^{3/2} \, dx \right] \, dz
\]

Integro rispetto a \(x \):

\[
\int_{-1}^{1} \left[2/3x^3\sqrt{1-z^2} + 2z^2x\sqrt{1-z^2} + 2/3(1-z^2)^{3/2}x \right]_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \, dz
\]

\[
\int_{-1}^{1} 4/3(1-z^2)^{3/2} \sqrt{1-z^2} + 4z^2(1-z^2) + 4/3(1-z^2)^{3/2} \sqrt{1-z^2} \, dz
\]

Integro rispetto a \(z \):

\[
\int_{-1}^{1} 4/3 + 4/3z^4 - 8/3z^2 + 4z^2 - 4z^4 + 4/3 + 4/3z^4 - 8/3z^2 \, dz
\]

\[
[8/3z - 4/15z^5 - 4/9z^3]_{-1}^{1} = 8/3 + 8/3 - 4/15 - 4/15 - 4/9 - 4/9 = 2(120 - 12 - 20)/(45) = \frac{176}{45}
\]

Esercizio 9.11

Si consideri il cono \(C = \{(x,y,z) \in \mathbb{R}^3 : \sqrt{x^2+y^2} \leq z \leq 1 \} \). Calcolare

\[
\int_{C} ze^{-x^2-y^2} \, dx \, dy \, dz.
\]

La scrittura del dominio e dell’integranda diventano più semplici se passo a coordinate cilindriche, infatti ottengo che

\[
\sqrt{x^2+y^2} \leq 1 \implies 0 \leq x^2 + y^2 \leq 1, \quad 0 \leq z \leq 1 \implies 0 \leq x \leq 1
\]

Inoltre, \(\sqrt{x^2+y^2} \leq z \) implica \(\rho \leq z \), con \(0 \leq z \leq 1 \), integro quindi sul dominio:

\[
E = \{ (\rho, \theta, z) \text{ t.c.} 0 < \rho < 1, \quad 0 < \theta < 2\pi, \quad \rho \leq z \leq 1 \}
\]

e tengo \(\rho \) come prima variabile di integrazione. Tenendo conto che il determinante jacobiano della trasformazione scelta è \(\rho \), l’integrale da calcolare

\[
\int_{C} ze^{-x^2-y^2} \, dx \, dy \, dz
\]

diventa:

\[
\int_{0}^{1} \left[\int_{0}^{2\pi} \left[\int_{\rho}^{1} z \ast \rho \ast e^{-\rho^2} \, dz \right] \, d\theta \right] \, d\rho
\]

\[
= 2\pi \int_{0}^{1} \left[z^2/2 \ast \rho \ast e^{-\rho^2} \right]_{\rho}^{1} \, d\rho
\]
Capitolo 9. Integrali multipli

\[= \pi \int_0^1 \rho \cdot e^{-\rho^2} - \rho^3 \cdot e^{-\rho^2} \, d\rho = \]

Spezzo in due l’integrale, ponendo \(I = \pi \cdot (I_1 - I_2) \) con

\[I_1 = \int_0^1 \rho \cdot e^{-\rho^2} \, d\rho = \left[-1/2 e^{-\rho^2} \right]_0^1 = 1/2 \cdot (1 - e^{-1}) \]

\[I_2 = \int_0^1 \rho^3 \cdot e^{-\rho^2} \, d\rho \]

Integro per parti:

\[f(x) = \rho^2, \quad f'(x) = 2\rho g(x) = -1/2 \cdot e^{-\rho^2} g'(x) = \rho \cdot e^{-\rho^2} \]

\[I_2 = \left[-1/2 \cdot \rho^2 \cdot e^{-\rho^2} \right]_0^1 - \int_0^1 -1/2 \cdot e^{-\rho^2} \cdot 2\rho \, d\rho \]

\[I_2 = -1/2 \cdot e^{-1} + 1/2 \left[e^{-\rho^2} \right]_0^1 = \]

\[I_2 = -1/2 \cdot e^{-1} - 1/2 e^{-1} + 1/2 = -e^{-1} + 1/2 \]

Quindi

\[I = \pi \cdot (1/2 - 1/2 e^{-1} + e^{-1} - 1/2) = \pi / 2 e^{-1} \]

Esercizio 9.12

Si calcoli il volume di \(D = \{(x, y, z) \in \mathbb{R}^3 : x^2 - 2y < z < -y^2 + 2x\} \).

Studio del dominio: Dalla disuguaglianza che definisce \(D \), si deduce \(x^2 - 2y < -y^2 + 2x \) e con il metodo del completamento del quadrato:

\[x^2 + y^2 - 2x - 2y < 0 \implies (x - 1)^2 + (y - 1)^2 < 2 \]

e tutti i punti dell’insieme stanno all’interno della circonferenza di centro \((1, 1)\) e raggio \(\sqrt{2}\).

In questo caso, passare alle coordinate cilindriche centrate nell’origine non porta a semplificazioni nella scrittura del dominio, allora scegli le coordinate cilindriche centrare in \((1, 1)\), ponendo

\[x = 1 + \rho \cos \theta, \quad y = 1 + \rho \sin \theta, \quad z = z \]

in modo che tutti i punti del dominio stanno all’interno della circonferenza \(\rho^2 < 2\), mentre l’intervallo in cui varia \(z \) si scrive come:

\[\rho^2 \cos^2 \theta + 1 + 2\rho \cos \theta - 2\rho \sin \theta < z < -1 - \rho^2 \sin^2 \theta - 2\rho (\sin \theta - \cos \theta) \]
Calcolo dell’integrale:

\[\text{mis } D = \int_{D} 1 \, dx \, dy \, dz \]

\[= \int_{0}^{2\pi} \left[\int_{0}^{\sqrt{2}} \int_{-1}^{1} \frac{\rho^2 \cos^2 \theta + 1 + 2\rho \cos \theta - 2\rho \sin \theta}{\rho \sin \theta - \rho \cos \theta} \, d\rho \, d\theta \right] \, dz \, d\rho \, d\theta \]

\[= \int_{0}^{2\pi} \left[\int_{0}^{\sqrt{2}} \left[\rho^2 \cos^2 \theta + 1 + 2\rho \cos \theta - 2\rho \sin \theta \right] \, d\rho \, d\theta \right] \, dz \, d\rho \, d\theta \]

\[= \int_{0}^{2\pi} \left[\int_{0}^{\sqrt{2}} \rho + \rho^3 \sin^2 \theta + 2\rho^2 \sin \theta + \rho^2 \cos \theta - 2\rho^2 \sin \theta \, d\rho \, d\theta \right] \, dz \, d\rho \, d\theta \]

\[= \int_{0}^{2\pi} \left[\int_{0}^{\sqrt{2}} \rho^3 + 2\rho \, d\rho \, d\theta \right] \, dz \, d\rho \, d\theta \]

\[= 2\pi \left[\rho^4 / 4 + \rho^2 \right]_{0}^{\sqrt{2}} = 6\pi \]

Esercizio 9.13

Si calcoli

\[\int_{A} |z| \, dx \, dy \, dz, \]

dove \(A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 4, x^2 + y^2 - 2y \leq 0\} \).

Studio del dominio: I punti stanno all’interno della sfera di raggio 2 definita dall’equazione \(x^2 + y^2 + z^2 = 4 \), inoltre

\[x^2 + y^2 - 2y \leq 0 \rightarrow x^2 + (y - 1)^2 \leq 1 \]

quindi i punti stanno all’interno del cilindro di centro (0, 1) e di raggio 1.

E’ conveniente passare alle coordinate cilindriche:

\[x = \rho \cos \theta, \quad y = 1 + \rho \sin \theta, \quad z = z \]

in modo da poter scrivere il dominio in una forma più semplice:

\[\begin{cases} \rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta + 2\rho \sin \theta + 1 + z^2 \leq 4 \\ \rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta + 1 + 2\rho \sin \theta - 2\rho \sin \theta - 2 \leq 0 \end{cases} \]

\[\rightarrow \begin{cases} \rho^2 + 2\rho \sin \theta + z^2 \leq 3 \\ \rho^2 \leq 1 \end{cases} \]

Si possono quindi determinare gli intervalli in cui variano \(\rho, z e \theta \): si ha \(0 \leq \theta \leq 2\pi \), \(0 \leq \rho \leq 1 \), mentre

\[-\sqrt{3 - \rho^2 - 2\rho \sin \theta} \leq z \leq \sqrt{3 - \rho^2 - 2\rho \sin \theta} \]
e quindi bisogna integrare prima in dz.

Calcolo dell’integrale:

\[
\int_0^{2\pi} \int_0^1 \int_0^{\sqrt{3-\rho^2-2\rho\sin\theta}} \left[\left| z \right| \right] \, dz \, \rho \, d\theta =
\]

Sto integrando una funzione pari su un dominio simmetrico rispetto a 0, quindi:

\[
= 2 \int_0^{2\pi} \int_0^1 \int_0^{\sqrt{3-\rho^2-2\rho\sin\theta}} \left| z \right| \, dz \, \rho \, d\theta =
\]

\[
= 2 \int_0^{2\pi} \int_0^1 \int_0^{\sqrt{3-\rho^2-2\rho\sin\theta}} \rho \, d\rho \, d\theta =
\]

\[
= \int_0^{2\pi} \int_0^1 (3 - \rho^2 - 2\rho\sin\theta) \, d\rho \, d\theta =
\]

\[
= \int_0^{2\pi} \left[3\rho - \rho^3 / 3 - \rho^2 \sin\theta \right]_0^1 \, d\theta =
\]

\[
= \int_0^{2\pi} 3 - 1/3 - \sin\theta \, d\theta =
\]

\[
= \left[8/3 + \cos\theta \right]_{2\pi}^0 = 16/3\pi
\]

Esercizio 9.14

Si calcoli il baricentro di una calotta sferica riempita di materiale omogeneo, definita dalle equazioni:

\[
\{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } x^2 + y^2 + z^2 \leq R^2 \land z \geq \sqrt{R^2 - r^2}\}
\]

dove R è il raggio della sfera e r il raggio della calotta.

La prima disequazione che descrive la calotta indica che i punti devono stare all’interno della sfera di raggio R, la seconda disequazione esclude dal dominio la parte di sfera al di sotto della sezione circolare di raggio r.

Supponiamo di avere un corpo con una densità di massa $\delta_{x,y,z}$. Le coordinate del baricentro sono:

\[
\bar{x} = \frac{1}{\text{mis } S} \int_S x \, dx \, dy \, dz
\]
\[
\bar{y} = \frac{1}{\text{mis } S} \int_S y \, dx \, dy \, dz
\]
\[
\bar{z} = \frac{1}{\text{mis } S} \int_S z \, dx \, dy \, dz
\]

Dobbiamo calcolare il volume di S, e i tre integrali tripli per le coordinate.

Osservo che il dominio è simmetrico rispetto all’asse x e dimostro che $\bar{x} = 0$, questo equivale a dimostrare che
Capitolo 9. Integrali multipli

\[\int_{S \cap \{x>0\}} x \, dx \, dy \, dz = - \int_{S \cap \{x<0\}} x \, dx \, dy \, dz \quad \text{formula *} \]

in modo che la somma dei due integrali sia nulla. Introduco il cambio di variabili:

\[x = -X, \quad y = Y, \quad z = Z \]

La matrice associata a questo cambio di variabili è:

\[
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

e \(|\det J_T| = 1 \neq 0 \) quindi la trasformazione \(T \) è invertibile ed è un diffeomorfismo.

Se \((x, y, z) \in S \cap \{x > 0\} \), allora \((X, Y, Z) = (-x, y, z) \in S \cap \{x < 0\} \) (perché il dominio è simmetrico rispetto all’asse \(x \)). Allora

\[\int_{S \cap \{x>0\}} x \, dx \, dy \, dz = \int_{S \cap \{x<0\}} -X \, dX \, dY \, dZ = - \int_{S \cap \{x<0\}} x \, dx \, dy \, dz \]

e quindi, avendo dimostrato la formula *, \(\bar{x} = 0 \).

Analogamente si dimostra che \(\bar{y} = 0 \).

Per calcolare \(z \) integro per strati, infatti, intersecando la calotta con un piano orizzontale si ottengono tanti strati a forma di cerchio, definiti come:

\[S_h = \{(x, y) \in \mathbb{R}^2 \mid \text{t.c. } x^2 + y^2 \leq R^2 - z^2\} \]

Per determinare l’intervallo in cui varia \(z \), osservo che \(z \geq \sqrt{R^2 - r^2} \), inoltre,

\[x^2 + y^2 + z^2 \leq R^2 \land x^2 + y^2 > 0 \implies z^2 \leq R^2 \implies -R \leq z \leq R \]

quindi si conclude:

\[\sqrt{R^2 - r^2} \leq z \leq R \]

Ottengo:

\[\int_S z \, dx \, dy \, dz = \]

\[= \int_{\sqrt{R^2 - r^2}}^R z \ast \left[\int_{S_h} \, dx \, dy \right] \, dz \]

\(S_h \) è un cerchio di raggio \(\sqrt{R^2 - z^2} \) e ha area \(\pi(R^2 - z^2) \), e sostituendo quest’espressione nell’integrale da calcolare:

\[= \int_{\sqrt{R^2 - r^2}}^R \pi z \ast (R^2 - z^2) \, dz \]
Capitolo 9. Integrali multipli

Calcolo l’area di ogni strato

Calcolo dell’integrale

Si può quindi integrare per strati, dove le sezioni di

Studio del dominio

Esercizio 9.15

Calcolo il volume della calotta.

\[
mis\ S = \int_{\sqrt{R^2 - r^2}}^{R} \left[\int_{S_z} dx \ dy \right] dz
\]

\[
= \int_{\sqrt{R^2 - r^2}}^{R} [\pi(R^2 - z^2)] \ dz = \pi \int_{\sqrt{R^2 - r^2}}^{R} [R^2z - z^3/3] R \ dz
\]

\[
= \pi \int_{\sqrt{R^2 - r^2}}^{R} \left[R^3 - R^2 \sqrt{R^2 - r^2} - R^3/3 + 1/3(R^2 - r^2)^{3/2} \right]
\]

\[
= \pi \int_{\sqrt{R^2 - r^2}}^{R} \left[2/3R^3 - R^2 \sqrt{R^2 - r^2} + 1/3(R^2 - r^2)(R^2 - r^2)^{1/2} \right]
\]

\[
= 2\pi/3R^3 - \pi \sqrt{R^2 - r^2} \ * 2/3R^2 - 1/3r^2
\]

quindi

\[
z = \frac{1}{2/3R^3 - \sqrt{R^2 - r^2} \ * (2/3R^2 - 1/3r^2)} \ * r^2/4
\]

Esercizio 9.15

Calcolare il volume di:

\[D = \{(x, y, z) \in \mathbb{R}^3 \ , t.c. (1 - \sqrt{x^2 - y^2})^2 \leq 1 - 4z^2 \}\]

Studio del dominio: Per determinare l’intervallo in cui varia \(z \), osservo che:

\[1 - 4z^2 \geq 0 \rightarrow 4z^2 - 1 \leq 0 \rightarrow -1/2 \leq z \leq 1/2\]

Si può quindi integrare per strati, dove le sezioni di \(D \) rispetto all’asse \(z \) sono definite come:

\[d_z = \{(x, y) \in \mathbb{R}^2 \ t.c. (1 - \sqrt{x^2 + y^2})^2 \leq 1 - 4z^2 \}\]

Calcolo dell’integrale:

\[mis\ D = \int_D 1 \ dx \ dy \ dz = \int_{1/2}^{1/2} \left[\int_{D_z} dx \ dy \right] dz\]

Calcolo l’area di ogni strato \(d_z \): siccome nella definizione compare il termine \(x^2 + y^2 \) e \(z \) è fissato, è conveniente passare alle coordinate polari.
x = \rho \cos \theta, \; y = \rho \sin \theta, \; |\det J_T| = \rho

Con il cambio di coordinate, l’equazione che definisce \(d_z\) in termini di \(\rho\) e \(\theta\) è:

\[(1 - \rho)^2 \leq 1 - 4z^2, \quad \text{con } z \text{ fissato}\]
\[-\sqrt{1 - 4z^2} \leq 1 - \rho \leq \sqrt{1 - 4z^2}\]
\[1 - \sqrt{1 - 4z^2} \leq \rho \leq 1 + \sqrt{1 - 4z^2}\]

Non ci sono restrizioni su \(\theta\), che varia in \((0, 2\pi)\).

Se chiamo \(T\) la trasformazione nelle coordinate polari, allora \(d_z = T(e_z)\), con

\[e_z = \{(\rho, \theta) \in (0, +\infty) \times (0, 2\pi) \quad t.c. \quad 1 - \sqrt{1 - 4z^2} \leq \rho \leq 1 + \sqrt{1 - 4z^2}\}\]

quindi

\[
\int_{d_z} dx\; dy = \int_{e_z} \rho\; d\rho\; d\theta
\]
\[
= \int_{0}^{2\pi} d\theta \left[\int_{1 - \sqrt{1 - 4z^2}}^{1 + \sqrt{1 - 4z^2}} \rho\; d\rho \right]
\]
\[
= 2\pi \left[\frac{\rho^2}{2} \right]_{1 - \sqrt{1 - 4z^2}}^{1 + \sqrt{1 - 4z^2}}
\]
\[
= \pi \left[(1 + \sqrt{1 - 4z^2})^2 - (1 - \sqrt{1 - 4z^2})^2 \right]
\]
\[
= 4\pi \sqrt{1 - 4z^2}, \quad \text{area di ogni strato}
\]

Per calcolare la misura di \(D\):

\[
\text{mis } D = \int_{-1/2}^{1/2} 4\pi \sqrt{1 - 4z^2} \; dz
\]

\[z \in (-1/2, 1/2) \rightarrow -1 < 2z < 1 \quad \text{e posso porre } 2z = \sin t . \]

\[z = 1/2 \rightarrow \sin t = 1 \rightarrow t = \pi/2\]
\[z = -1/2 \rightarrow \sin t = -1 \rightarrow t = -\pi/2\]
\[dz = 1/2 \cos t\; dt\]
\[
\text{mis } D = 1/2 \int_{-\pi/2}^{\pi/2} 4\pi \sqrt{1 - \sin^2 t} \; \cos t\; dt
\]
\[
\text{mis } D = 1/2 \int_{-\pi/2}^{\pi/2} 4\pi \cos^2 t\; dt
\]

Siccome

\[
\int \cos^2 t\; dt = \int 1 + \cos(2t)\; dt = t + 1/2 \sin(2t)
\]
 segue che
\[
\text{mes } D = 2\pi [t + 1/2 \sin(2t)]^{\pi/2}_{-\pi/2}
\]
\[
\text{mes } D = 2\pi [\pi/2 + \pi/2] = \pi^2
\]

Esercizio 9.16

Considerando l’esercizio precedente, trovare lo stesso risultato usando le coordinate cilindriche e integrando prima in \(dz\).

Utilizzo il cambio di variabili \(T\):

\[
x = \rho \cos \theta, \quad y = \rho \sin \theta, \quad z = z
\]
\[
|\det J_T(\rho, \theta, z)| = \rho
\]

In questo caso, per poter integrare prima in \(dz\), voglio esprimere \(z\) in funzione di \(\rho\) partendo dall’equazione:

\[
(1 - \rho)^2 \leq 1 - 4z^2
\]
\[
4z^2 \leq 1 - (1 - \rho)^2
\]
\[
-1/2\sqrt{1 - (1 - \rho)^2} \leq z \leq 1/2\sqrt{(1 - (1 - \rho)^2}
\]

Determino gli intervalli in cui variano \(\rho\) e \(\theta\).

\[
(1 - \rho)^2 \leq 1 - 4z^2 \rightarrow (1 - \rho)^2 \leq 1
\]

e questo è vero se e solo se \(0 < \rho < 2\), mentre \(\theta \in (0, 2\pi)\).

\[
\text{mes } D = \int_0^{2\pi} \left[\int_0^2 \left[\int_{-1/2\sqrt{1 - (1 - \rho)^2}}^{1/2\sqrt{1 - (1 - \rho)^2}} 1 \, dz \right] \rho \, d\theta \right] d\rho
\]

L’integrale più esterno dà solo il contributo \(2\pi\).

\[
\text{mes } D = 2\pi \int_0^2 \left[\int_{-1/2\sqrt{1 - (1 - \rho)^2}}^{1/2\sqrt{1 - (1 - \rho)^2}} \rho \, dz \right] d\rho =
\]
\[
= 2\pi \int_0^2 \rho [z]_{-1/2\sqrt{1 - (1 - \rho)^2}}^{1/2\sqrt{1 - (1 - \rho)^2}} \, d\rho =
\]
\[
= 2\pi \int_0^2 \rho \sqrt{1 - (1 - \rho)^2} \, d\rho =
\]

Pongo \(1 - \rho = \sin t\). Se \(\rho = 0\), \(\sin t = 1\), \(t = \pi/2\). Se \(\rho = 2\), \(\sin t = -1\), \(t = -\pi/2\)

\[
d\rho = -\cos t \, dt
\]

\[
\text{mes } D = 2\pi \star \int_{-\pi/2}^{\pi/2} -\cos t (1 - \sin t) |\cos t| \, dt
\]
\[
eq 2\pi \cdot \int_{-\pi/2}^{\pi/2} \cos t (1 - \sin t) | \cos t | \, dt
\]

\[
= 2\pi \cdot \int_{-\pi/2}^{\pi/2} (1 - \sin t) \cos^2 t \, dt
\]

\[
= 2\pi \cdot \int_{-\pi/2}^{\pi/2} \cos^2 t \, dt - 2\pi \cdot \int_{-\pi/2}^{\pi/2} \sin t \cos^2 t \, dt = \pi^2 + 0
\]
e questo vale perché l’ultimo termine è l’integrale di una funzione dispari su un dominio simmetrico.

Esercizio 9.17

Calcolare

\[
\int_{D} \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz
\]
con

\[
D = \{(x, y, z) \text{ t.c.} x^2 + y^2 + z^2 \leq 1, \ z^2 - x^2 - y^2 \leq 0\}
\]

La prima disuguaglianza che definisce \(D\) rappresenta una sfera, la seconda si può riscrivere come:

\[-\sqrt{x^2 + y^2} \leq z \leq \sqrt{x^2 + y^2}\]
dove l’equazione \(z = \sqrt{x^2 + y^2}\) descrive un cono con la superficie circolare, rivolto verso l’alto, mentre \(z = -\sqrt{x^2 + y^2}\) descrive un cono rivolto verso il basso.

\(D\) è l’insieme dei punti che stanno dentro la sfera, e che sono compresi tra le superficie dei due coni.

Uso le coordinate sferiche:

\[
x = \rho \cos \theta \sin \phi \\
y = \rho \sin \theta \sin \phi \\
z = \rho \cos \phi \\
det J_T(\rho, \theta, \phi) = \rho^2 \sin \phi
\]

Il dominio si trasforma in

\[
\{(\rho, \theta, \phi) \text{ t.c.} 0 \leq \rho \leq 1, \ \rho^2 \cos^2 \phi \leq \rho^2 \sin^2 \phi\}
\]
Dev’essere quindi

\[
\cos^2 \phi \leq \sin^2 \phi
\]
e per \(\phi \in (0, \pi)\) la disuguaglianza è verificata per \(\pi/4 \leq \phi \leq 3\pi/4\).
Nelle nuove coordinate il dominio è

\[E = \{(\rho, \theta, \phi) \in \mathbb{R}^3 \times (0, 2\pi) \times (0, \pi) \ t.c.0 \leq \rho \leq 1, \ \pi/4 \leq \phi \leq 3\pi/4, \ 0 < \theta < 2\pi\} \]

Siccome la funzione è continua e limitata su un insieme limitato è possibile passare a coordinate sferiche:

\[
\int_{E} \rho^3 \sin \phi \, d\rho \, d\theta \, d\phi
\]
e siccome l’integrando non dipende da \(\theta \)

\[
2\pi \int_{0}^{1} \rho^3 \left[\int_{\pi/4}^{3\pi/4} \sin \phi \, d\phi \right] \, d\rho
\]

\[
2\pi \left[\int_{0}^{1} \rho^3 \, d\rho \right] \left[\int_{\pi/4}^{3\pi/4} \sin \phi \, d\phi \right] \]

\[
2\pi \left[\int_{0}^{1} \rho^4/4 \, d\rho \right] \left[-\cos \phi \right]_{\pi/4}^{3\pi/4} = \pi/2 \pm \sqrt{2}
\]

Esercizio 9.18

Considerare l’integrale

\[
\int_{S} f(x, y, z) \, dx \, dy \, dz
\]

che si riduce integrando per fili rispetto a \(z \) a

\[
\int_{T} \left[\int_{\sqrt{x^2+y^2}}^{2-x^2-y^2} f(x, y, z) \, dz \right] \, dx \, dy
\]
dove

\[T = \{(x, y) \in \mathbb{R}^2 \ t.c.x^2 + y^2 \leq 1\} \]

1. Impostare il calcolo dell’integrale per strati rispetto a \(z \)

2. Trasformare l’esercizio in coordinate cilindriche e ridurre l’integrale a tre integrali successivi.

Studio del dominio: \(z = \sqrt{x^2 + y^2} \) descrive un cono rivolto verso l’alto, mentre \(z = 2 - (x^2 + y^2) \) descrive un parabolide circolare con vertice nel punto \((0, 0, 2) \) e con concavità rivolta verso il basso. I punti del solido sono compresi tra le superfici del parabolide (in alto) e quella del cono (in basso).

Determino per via analitica la curva in cui si intersecano il cono e il parabolide:

\[
\sqrt{x^2 + y^2} = 2 - (x^2 + y^2)
\]
Pongo \(x^2 + y^2 = \rho^2 \)

\[
\begin{align*}
\rho &= 2 - \rho^2 \\
\rho^2 + \rho - 2 &= 0 \\
(\rho + 2)(\rho - 1) &= 0 \\
\rho &= 1, \rho = -2 \text{ non accettabile}
\end{align*}
\]

Allora la curva di intersezione è la circonferenza \(x^2 + y^2 = 1 \) che ha \(z = 1 \) come proiezione sull’asse \(z \). Si osserva che questa è la circonferenza di raggio massimo nel solido, infatti tutti i punti del dominio sono definiti dall’equazione:

\[
x^2 + y^2 \leq 1
\]

Integrazione per strati: Definiamo l’insieme:

\[
S_h = \{(x, y) \in \mathbb{R}^2 \text{ t.c.} (x, y, h) \in S\}
\]

\[
S_h = \begin{cases}
S_{h_1} = \{(x, y) \in \mathbb{R}^2 \text{ t.c.} \sqrt{x^2 + y^2} \leq h\} & \iff 0 < h < 1 \\
S_{h_2} = \{(x, y) \in \mathbb{R}^2 \text{ t.c.} h \leq 2 - (x^2 + y^2)\} & \iff 1 < h < 2
\end{cases}
\]

Quindi il calcolo dell’integrale si imposta in questo modo:

\[
I = \int_0^1 \left[\int_{S_{h_1}} f(x, y, h) \, dx \, dy \right] \, dh + \int_1^2 \left[\int_{S_{h_2}} f(x, y, h) \, dx \, dy \right] \, dh
\]

Passaggio alle coordinate cilindriche:

\[
x = \rho \cos \theta, \quad y = \rho \sin \theta, \quad z = z
\]

\[
\sqrt{x^2 + y^2} \leq z \leq 2 - (x^2 + y^2) \quad \rightarrow \quad \rho \leq z \leq 2 - \rho^2
\]

\[
x^2 + y^2 \leq 1 \quad \rightarrow \quad \rho^2 \leq 1
\]

L’integrale si imposta come:

\[
I = \int_0^{2\pi} \left[\int_0^1 \left(\int_0^{2-\rho^2} f(\rho \cos \theta, \rho \sin \theta, z) \, dz \right) \, d\rho \right] \, d\theta
\]

Esercizio 9.19

Calcolare:

\[
\int dx \, dy \, dz
\]

con
\[D = \{(x, y, z) \in \mathbb{R}^3, \text{t.c.} 3x^2 + y^2 \leq (z - 2)^2, 0 \leq z \leq 1\} \]

La prima equazione del dominio descrive un cono di sezione ellittica centrato in
(0, 0, 2), cioè, interseando il cono con un piano del tipo \(z = h \) ottengo gli insiemi:

\[d_h = \{(x, y, h) \text{ t.c.} 3x^2 + y^2 \leq (h - 2)^2\}. \]

Quindi è conveniente integrare per strati rispetto a \(z \):

\[
\int_0^1 z \left[\int_{d_h} \frac{1}{1 + 3x^2 + y^2} \, dx \, dy \right] \, dz
\]

Il dominio non è a simmetria cilindrica quindi in questo caso usare le coordinate cilindriche non dà buoni risultati, introduco invece le coordinate ellittico-polari: pongo

\[x = \frac{1}{\sqrt{3}} \rho \cos \theta, \ y = \rho \sin \theta \]

in modo che l’equazione che definisce il dominio, \(3x^2 + y^2 \leq (z - 2)^2 \), si possa riscrivere come

\[\rho^2 \leq (z - 2)^2 \]

e in modo che seno e coseno non compaiano più.

Calcolo il determinante jacobiano di questo cambio di variabili:

\[
J_T(\rho, \theta) = \begin{vmatrix}
\cos \theta & \frac{1}{\sqrt{3}} \\
\sin \theta & \frac{1}{\sqrt{3}} \rho \cos \theta
\end{vmatrix} = \rho \sin \theta \frac{1}{\sqrt{3}}
\]

\[
\det J_T = \rho \frac{1}{\sqrt{3}}
\]

\[d_h = 3x^2 + y^2 \leq (h - 2)^2 \]

\[d_h = \rho^2 \leq (h - 2)^2 \]

\[\rightarrow 0 \leq \rho \leq 2 - h \]

Calcolo prima l’integrale su \(d_h \):

\[
\int_{d_h} \frac{1}{1 + 3x^2 + y^2} \, dx \, dy = \]

\[
= \frac{1}{\sqrt{3}} \int_0^{2\pi} \left[\int_0^{2-h} \frac{1}{1 + \rho^2} \, \rho \, d\rho \right] \, d\theta
\]

\[
= 2\pi \int_0^{2-h} \frac{\rho}{1 + \rho^2} \, d\rho = \]

\[
= \frac{\pi}{\sqrt{3}} \left[\log |1 + \rho^2| \right]_0^{2-h}
\]
\[\frac{\pi}{\sqrt{3}} \log(1 + (2 - h)^2) \]

Complessivamente ottengo l’integrale:

\[I = \int_0^1 \frac{\pi}{\sqrt{3}} h \log(1 + (2 - h)^2) \, dh = \]

Integro per sostituzione:

\[t = 2 - h \quad \rightarrow \quad dt = -dh \]
\[h = 0 \quad \rightarrow \quad t = 2 \]
\[h = 1 \quad \rightarrow \quad t = 1 \]

\[I = \frac{\pi}{\sqrt{3}} \int_0^2 (2 - t) \log(1 + t^2) \, dt = \]

Spezzo l’integrale in due addendi:

\[I = \frac{\pi}{\sqrt{3}} \left[I_1 - I_2 \right] \]

con

\[I_1 = \int_1^2 2 \log(1 + t^2) \, dt, \]
\[I_2 = \int_1^2 t \log(1 + t^2) \, dt. \]

Prima calcolo \(I_1 \) e integro per parti \(\log(1 + t^2) \):

\[f(t) = t, \quad f'(t) = 1, \quad g(t) = \log(1 + t^2), \quad g'(t) = \frac{2t}{1 + t^2} \]

\[t \log(1 + t^2) - \int \frac{2t^2}{1 + t^2} \, dt = \]

Osservo che \(\frac{2t^2}{1 + t^2} = 2 - \frac{2}{1 + t^2} \), quindi:

\[= t \log(1 + t^2) - 2 \int 1 - \frac{1}{1 + t^2} \, dt = \]
\[= t \log(1 + t^2) - 2[t - \arctan t] \]

Si ha quindi:

\[I_1 = [t \log(1 + t^2) - 2[t - \arctan t]]^2 = 2 \log 5 - \log 2 - 2(2 - 1 - \arctan 2 + \arctan 1) \]

Invece
Pongo $1 + t^2 = u$, in modo che $2t \, dt = du$.

t = 1 \longrightarrow u = 2 \\
t = 2 \longrightarrow u = 5 \\
I_2 = 1/2 \star \int_{2}^{5} \log u \, du = \\
I_2 = [u \cdot \log u]_{2}^{5} - \int_{2}^{5} u \cdot 1/u \, du = \left[u \cdot (\log u - 1)\right]_{2}^{5} \\
= 1/2[u \cdot (\log u - 1)]_{2}^{5} = 1/2[(5 \log 5 - 5) - (2 \log 2 - 2)]

Quindi complessivamente:

\[
I = \frac{\pi}{\sqrt{3}} \star \{2 \log 5 - \log 2 - 2[2 - 1 - \arctan 2 + \arctan 1] \\
-1/2 \star [5 \cdot \log 5 - 2 \log 2 - 5 + 2]\} = \\
I = \frac{\pi}{\sqrt{3}} \star \{2 \log 5 - \log 2 - 2 + 2 \arctan 2 - 2 \arctan 1 - 5/2 \log 5 + \log 2 + 3/2\} = \\
I = \frac{\pi}{\sqrt{3}} \star \{1/2 \log 5 + 2 \arctan 2 - 2 \arctan 1 - 1/2\} =
\]

9.5 Esercizi difficili

Esercizio 9.20 (cambio di variabili non standard)

Calcolare

\[
\int_{D} x^2/y \ast e^{xy} \, dx \, dy
\]

con

\[
D = \{(x, y) \text{ t.c. } \frac{1}{2x} \leq y \leq 1/x, \ 2x^2 \leq y \leq 3x^2 \}
\]

L’insieme D è un sottoinsieme del primo quadrante, e y è compresa tra due rami di iperbole e due rami di parabola. Integrare con la formula di riduzione in questo caso non conviene, perché bisognerebbe spezzare il dominio in tre parti.

Osservo che con la sostituzione $u = \frac{x^2}{y}$, $v = xy$, il dominio

\[
D = \{(x, y) \text{ t.c. } 1/2 \leq xy \leq 1, \ 1/3 < x^2/y < 1/2\}
\]
si riscrive come

\[E = \{ (u, v) \text{ t.c. } 1/2 \leq v \leq 1, 1/3 < u < 1/2 \}. \]

Verifico che il cambio di variabile scelto sia invertibile. Ponendo \(\xi(x, y) = x^2/y \) e \(\eta(x, y) = xy \), la corrispondenza che associa a \((x, y)\) la coppia (\(\xi(x, y), \eta(x, y)\)) = \((u, v)\) è suriettiva per definizione.

Dobbiamo verificare che è iniettiva:

Siano \((x_1, y_1) \) e \((x_2, y_2) \) due punti in \(D \). Supponiamo che \(\xi(x_1, y_1) = \xi(x_2, y_2) \) e \(\eta(x_1, y_1) = \eta(x_2, y_2) \) e ci chiediamo se questo implica \(x_1 = x_2 \) e \(y_1 = y_2 \).

\[
\xi(x_1, y_1) = \eta(x_2, y_2) \quad \rightarrow \quad x_1 y_1 = x_2 y_2
\]

\[
y_1 = \frac{x_2 y_2}{x_1}
\]

Sostituisco nella disuguaglianza:

\[
\frac{x_1^2}{y_1} = \frac{x_2^2}{y_2}
\]

ottenendo:

\[
\frac{x_1^2}{x_2 y_2} = \frac{x_2^2}{y_2}
\]

\[
x_1^3 = x_2^3
\]

se e solo se \(x_1 = x_2 \), e risostituendo nell’altra relazione si ottiene anche \(y_1 = y_2 \).

Allora l’iniettività è verificata e la trasformazione è invertibile.

In generale non è possibile trovare le inverse di \(\xi, \eta \) in forma esplicita, però vale il seguente risultato: ponendo \(\phi(x, y) = (\xi(x, y), \eta(x, y)) \), si ha:

\[
J_{\phi^{-1}}(u, v) = J_{\phi}^{-1}(x, y) \text{ con } (x, y) = \phi^{-1}(u, v)
\]

Applico questa formula per trovare det \(J_{\phi^{-1}}(u, v) \) senza dover calcolare esplicitamente l’inversa di \(\phi \):

\[
J_{\phi}(x, y) = \begin{pmatrix} 2x/y & -x^2/y^2 \\ y & x \end{pmatrix}
\]

\[
\det J_{\phi}(x, y) = 2x^2/y + x^2/y = 3x^2/y \neq 0 \in D
\]

\[
\det J_{\phi^{-1}}(u, v) = \frac{1}{\det J_{\phi}(x, y)} = \frac{y}{3x^2} = \frac{1}{3u} \neq 0 \quad 1/3 < u < 1/2
\]

Allora applico la formula del cambio di variabili:

\[
I = \int_E u \, e^v \frac{1}{3u} \, du \, dv =
\]
\[I = \frac{1}{3} \int_{1/3}^{1/2} \left[\int_{1/2}^{1} e^u \, dv \right] \, du = \frac{1}{3} \int_{1/3}^{1/2} e - \sqrt{e} \, du = \frac{1}{3} \left[e \cdot u - \sqrt{e} \cdot u \right]_{1/3}^{1/2} = \frac{1}{18} (e - \sqrt{e}) \]

Esercizio 9.21

Calcolare

\[\lim_{n \to +\infty} \int_{[0,1]^n} \max(x_1, \ldots, x_n) \, dx_1 \ldots dx_n \]

Calcolo l’integrale per i primi valori di \(n \):

1. \(n = 1 \rightarrow \int_0^1 x_1 \, dx_1 = \left[x_1^2/2 \right]_0^1 = 1/2 \)

2. \(n = 2 \rightarrow D = [0,1] \times [0,1] \rightarrow \int_0^1 \int_0^1 \max(x_1, x_2) \, dx_1 \, dx_2 = \]

Ponendo

\[x_1 = x, \ x_2 = y \]

\[d_1 = \{ (x, y) \ t.c. y \geq x \} \]

\[d_2 = \{ (x, y) \ t.c. x \geq y \} \]

\[d_1 = \{ (x, y) \ t.c. 0 < x < y < 1 \} \]

\[d_2 = \{ (x, y) \ t.c. 0 < y < x < 1 \} \]

Per additività:

\[\int_{[0,1]^2} \max(x_1, x_2) \, dx_1 \, dx_2 = \int_{d_1} x_2 \, dx_1 \, dx_2 + \int_{d_2} x_1 \, dx_1 \, dx_2 \]

\[\int_{d_1} x_2 \, dx_1 \, dx_2 = \int_0^1 \int_0^{x_2} x_2 \, dx_1 \, dx_2 = \int_0^1 x_2 \int_0^{x_2} dx_1 \, dx_2 = \int_0^1 x_2^2 \, dx_2 = 1/3 \]

Analogamente

\[\int_{d_2} x_1 \, dx_1 \, dx_2 = \int_0^1 \int_0^{x_1} x_1 \, dx_2 \, dx_1 = 1/3 \]

Quindi

\[\int_0^1 \int_0^1 \max(x_1, x_2) \, dx_1 \, dx_2 = 2/3 \]
3. \[n = 3 \rightarrow \int_{[0,1]^3} \max(x_1, x_2, x_3) \, dx_1 \, dx_2 \, dx_3 \]

Il dominio \([0,1]^3\) si divide in sei sottoinsiemi del tipo:
\[\{ 0 \leq x_{i_1} \leq x_{i_2} \leq x_{i_3} \leq 1 \} \]
con \((i_1, i_2, i_3)\) permutazione di \((1,2,3)\), e tali permutazioni sono sei. Calcolo l’integrale su ciascuno di questi sottoinsiemi.

\[
\int_{d_{i_1,i_2,i_3}} \max(x_1, x_2, x_3) \, dx_1 \, dx_2 \, dx_3 =
\]

\[
eq \int_0^1 \int_0^{x_{i_3}} \int_0^{x_{i_2}} x_{i_3} \, dx_{i_1} \, dx_{i_2} \, dx_{i_3} =
\]

bisogna tenere sempre l’integrale con la variabile massima per ultimo. Il valore di questo integrale non dipende da \(i_1, i_2, i_3\), allora l’integrale sul cubo si spezza in 6 integrali che hanno tutti lo stesso valore.

\[
\int_0^1 x_{i_3} \left[\int_0^{x_{i_3}} \int_0^{x_{i_2}} x_{i_3} \, dx_{i_1} \, dx_{i_2} \, dx_{i_3} =
\]

Poniamo \(i_1 = 1, i_2 = 2, i_3 = 3\)

\[
\int_0^1 x_3^3/2 \, dx_3 = [x^4/8]^1_0 = 1/8
\]

Quindi
\[
\int_{(0,1)^3} \max(x_1, x_2, x_3) \, dx_1, dx_2, dx_3 = 6 \cdot 1/8 = 3/4
\]

4. La successione \(\{a_n\}\) ha termini

\(a_1 = 1/2, a_2 = 2/3, a_3 = 3/4\)

e facciamo la congettura:
\[a_n = \frac{n}{n+1}, \]

Osservo che l’integrale triplo:

\[
\int_a^b \int_{\alpha_z}^{\beta_z} \int_{\delta_{yz}}^{\delta_{yz}} \, dx \, dy \, dz
\]
equivale a

\[
\int_a^b dz \int_{\alpha_z}^{\beta_z} dy \int_{\delta_{yz}}^{\delta_{yz}} \, dx
\]
Inoltre, il dominio \([0,1]^n\) si divide in \(n!\) sottoinsiemi della forma
\[D_{i_1,i_2,\ldots,i_n} = \{ 0 \leq x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_n} \leq 1 \} \]
e di conseguenza
\[
\int_{[0,1]^n} \max(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \cdots dx_n
\]
si spezza nella somma di \(n! \) integrali, che hanno tutti lo stesso valore.

\[
 = n! \int_{d_1,2,\ldots,n} \max(x_1, x_2, \ldots, x_n) dx_1 \ldots dx_n =
\]

In base all’osservazione precedente posso cambiare l’ordine di integrazione in questo modo:

\[
 = n! \int_{0}^{1} dx_n \left[\int_{0}^{x_n} dx_{n-1} \left[\int_{0}^{x_{n-1}} dx_{n-2} \ldots \left[\int_{0}^{x_2} x_n dx_2 \right] \ldots \right] dx_1 \right]
\]

con \(x_n \) massimo nell’insieme. Allora \(x_n \) può essere portato fuori da tutti gli integrali tranne dall’ultimo.

\[
 = n! \int_{0}^{1} x_n \left[\int_{0}^{x_n} dx_{n-1} \left[\int_{0}^{x_{n-1}} dx_{n-2} \left[\int_{0}^{x_2} 1 dx_2 \right] \ldots \right] dx_1 \right] dx_n
\]

Dimostrare per induzione la proprietà *, cioè:

\[
 \int_{0}^{x_n} dx_{n-1} \left[\int_{0}^{x_{n-1}} dx_{n-2} \left[\int_{0}^{x_2} 1 dx_2 \right] \ldots \right] dx_1 dx_n = \frac{x_n^{n-1}}{(n-1)!}
\]

Passo base: per \(n = 3 \),

\[
 \int_{0}^{x_3} dx_1 dx_2 dx_3 = x_3^2/2 = \frac{x_3^{n-1}}{(n-1)!}, \quad \text{proprietà verificata}
\]

Passo induttivo: supponiamo che la proprietà * valga per \(n \), e la dimostriamo per \(n + 1 \).

\[
 \int_{0}^{x_{n+1}} dx_n \int_{0}^{x_n} dx_{n-1} \ldots \int_{0}^{x_2} 1 dx_2 \ldots = \int_{0}^{x_{n+1}} x_{n+1}^{n-1}/(n-1)! dx_n = \frac{x_{n+1}^n}{n!}
\]

Questo completa la dimostrazione induttiva, la proprietà * è verificata per ogni \(n \). Complessivamente:

\[
 \int_{(0,1)^n} \max(x_1, \ldots, x_n) dx_1 dx_n =
\]

\[
 = n! \int_{0}^{1} x_n \left(\frac{(x_n)^{n-1}}{(n-1)!} \right) dx_n = n \int_{0}^{1} x_n \left(\frac{n^{n-1}}{n + 1} \right) dx_n = \frac{n}{n + 1}
\]

5. Infine, il limite richiesto vale

\[
 \lim_{n \to \infty} \frac{n}{n + 1} = 1
\]
Capitolo 10

Integrali di superficie

10.1 Richiami teorici

Consideriamo una superficie parametrizzata regolare, cioè un’applicazione \(\Sigma: A \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) regolare, e consideriamo \(f: E \subset \mathbb{R}^3 \rightarrow \mathbb{R} \) continua. Allora, supponendo che \(\Sigma(A) \subset E \) si può definire l’integrale di superficie:

\[
\int_{\Sigma(A)} f(x, y, z) \, d\Sigma
\]

come

\[
\int_A f \circ \Sigma(u, v) \cdot |\Sigma_u \times \Sigma_v| \, du \, dv.
\]

In particolare, se considero una superficie cartesiana \(\Sigma \) della forma:

\[
x = u, \; y = v, \; z = f(u, v)
\]

con \((x, y) \in A \subset \mathbb{R}^2\), cioè una superficie che è il grafico di una funzione di due variabili, vale la formula:

\[
|\Sigma_u \times \Sigma_v| = \sqrt{1 + |\nabla f(u, v)|^2}.
\]

10.2 Integrali di superficie

Esercizio 10.1

Si calcoli l’area della superficie \(\phi: [0, \pi] \times [0, 1] \rightarrow \mathbb{R}^3 \), \(\phi(u, v) = (\cos u, \sin u, v) \).

Chiamando \(K \) il dominio parametrico della superficie, l’area di \(\phi \) è definita come:

\[
A = \int_K \left| \frac{\partial \phi}{\partial u} \times \frac{\partial \phi}{\partial v} \right| \, du \, dv
\]
\[
\frac{\partial \phi}{\partial u} = (-\sin u, \cos u, 0)
\]
\[
\frac{\partial \phi}{\partial v} = (0, 0, 1)
\]
\[
\phi_u \times \phi_v = (\cos u, \sin u, 0)
\]
\[
|\phi_u \times \phi_v| = \sqrt{\cos^2 u + \sin^2 u} = 1
\]
\[
A = \int_0^\pi \left[\int_0^1 1 \, dv \right] \, du
\]
\[
A = \int_0^\pi 1 \, du = \pi
\]

Esercizio 10.2

Calcolare l’integrale di \(f = \frac{1}{z^2} \) sulla superficie

\[
\Sigma = \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } z = \frac{1}{\sqrt{x^2 + y^2}}, 1 \leq z \leq 2\}.
\]

Parametrizzo la superficie come:

\[
\Sigma = \{x = u, y = v, z = \frac{1}{\sqrt{u^2 + v^2}}\}
\]

Il dominio di \(\Sigma \) è dato da:

\[
E = \{(u, v) \text{ t.c. } 1 \leq \frac{1}{\sqrt{u^2 + v^2}} \leq 2\}
\]

Deve quindi essere

\[
1/2 \leq \sqrt{u^2 + v^2} \leq 1
\]
\[
1/4 \leq u^2 + v^2 \leq 1
\]

questa è una superficie di rotazione, nella quale \(z = f(x, y) \).

\[
\Sigma_u = \frac{\partial \Sigma}{\partial u} = (1, 0, -u \ast (u^2 + v^2)^{-3/2})
\]
\[
\Sigma_v = \frac{\partial \Sigma}{\partial v} = (0, 1, -v(u^2 + v^2)^{-3/2})
\]
\[
\Sigma_u \times \Sigma_v = [u \ast (u^2 + v^2)^{-3/2}, (u^2 + v^2)^{-3/2} v, 1]
\]
\[
|\Sigma_u \times \Sigma_v| = \sqrt{(u^2 + v^2)^{-3} \ast u^2 + (u^2 + v^2)^{-3} \ast v^2 + 1}
\]
\[
= \sqrt{\frac{u^2 + v^2}{(u^2 + v^2)^3} + 1}
\]
\[
= \sqrt{1 + \frac{1}{(u^2 + v^2)^2}}
\]
Capitolo 10. Integrali di superficie

\[f = \frac{1}{z^2} \rightarrow f = (u^2 + v^2)^2 \]

Applicando la definizione, l’integrale di \(f \) sulla superficie è:

\[
\int_E (u^2 + v^2)^2 \sqrt{1 + \frac{1}{(u^2 + v^2)^2}} \, du \, dv
\]

\[E = \{(u, v) \in \mathbb{R}^2 \text{ t.c.} \frac{1}{4} \leq u^2 + v^2 \leq 1\} \]

Per calcolare l’integrale doppio passo a coordinate polari:

\[u = \rho \cos \theta, \quad v = \rho \sin \theta \]

\[T^{-1}E = \{(\rho, \theta) \text{ t.c.} \frac{1}{2} \leq \rho \leq 1, \quad 0 \leq \theta \leq 2\pi\} \]

\[\det J_T = \rho \]

\[
\int_{T^{-1}E} \rho^4 \sqrt{1 + \frac{1}{\rho^4}} \, d\rho \, d\theta
\]

\[= \int_0^{2\pi} \int_{1/2}^1 \rho^4 \sqrt{1 + \frac{1}{\rho^4}} \, d\rho \, d\theta
\]

\[= \int_0^{2\pi} \left[2\pi \int_{1/2}^1 \rho^5 \sqrt{1 + \frac{1}{\rho^4}} \, d\rho \right] d\theta
\]

\[= \int_0^{2\pi} \left[2\pi \int_{1/2}^1 \rho^3 \sqrt{\rho^4 + 1} \, d\rho \right] d\theta
\]

Integro per sostituzione ponendo \(\rho^4 + 1 = t \), \(4\rho^3 \, d\rho = dt \),

\[\rho = 1 \rightarrow t = \rho^4 + 1 = 2 \]
\[\rho = 1/2 \rightarrow t = \rho^4 + 1 = 17/16 \]

\[2\pi \int_{17/16}^2 1/4\sqrt{t} \, dt = \]

\[1/2\pi[2/3t^{3/2}]_{17/16} = \]

\[= \pi/3[\sqrt{8} - \sqrt{(17/16)^{3/2}}] \]

Esercizio 10.3

Calcolare l’integrale:

\[
\int_{\Sigma} \frac{x^2 + y^2}{z^3} \, d\Sigma
\]

con
\[\Sigma = x = \sin(uv), \quad y = \cos(uv), \quad z = u \]

il cui dominio è:

\[E = \{1/2 \leq u \leq v, \quad v < 1\} \]

Calcolo:

\[\Sigma_u(u, v) = (\cos(uv) \ast v, -\sin(uv) \ast v, 1) \]
\[\Sigma_v(u, v) = (\cos(uv)u, -u \ast \sin(uv), 0) \]
\[\Sigma_u \times \Sigma_v = (\sin(uv) \ast u, \cos(uv) \ast u, -\cos(uv) \ast \sin(uv) \ast u + \sin(uv) \ast \cos(uv) \ast u) = (\sin(uv) \ast u, \cos(uv) \ast u, \sin(uv) \ast u) \]
\[|\Sigma_u \times \Sigma_v| = \sqrt{\sin^2(uv) \ast u^2 + \cos^2(uv) \ast u^2} = \sqrt{u^2} = |u| \]

Calcolo l’integrale:

\[\int_E \frac{\cos^2(uv) + \sin^2(uv)}{u^3} \ast |u| \, du \, dv \]
\[\int_E \frac{|u|}{u^3} \, du \, dv \]
\[E = \{1/2 \leq u \leq v, \quad v < 1\} \]

In \(E \ u > 0 \), quindi \(u = |u| \).

\[\int_E \frac{1}{u^2} \, du \, dv \]

Il dominio, definito da:

\[1/2 \leq u \leq v \leq 1 \]

e è una regione \(v \)-semplice, infatti \(u \leq v \leq 1 \), invece \(1/2 \leq u \leq 1 \), quindi integro prima in \(dv \).

\[\int_{1/2}^{1} \left[\int_{u}^{1} \frac{1}{u^2} \, dv \right] \, du \]
\[\int_{1/2}^{1} \frac{1 - u}{u^2} \, du \]
\[\int_{1/2}^{1} \frac{1}{u^2} \, du - \int \frac{1}{u} \, du \]
\[[-1/u - \log u]_{1/2}^{1} = -1 + 2 - \log 1 + \log 1/2 = 1 + \log 1/2 \]

Esercizio 10.4

Calcolare l’area della superficie
\[\Sigma = \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } z = 1/2(x^2 + 2y^2)\} \]

il cui dominio parametrico è dato da

\[x^2 + 4y^2 \leq 8 \]

Il dominio parametrico è un’ellisse centrata nell’origine. Inoltre

\[\Sigma(u, v) = \{x = u, y = v, z = (1/2 \cdot u^2 + 2v^2)\} \]

è una superficie cartesiana, quindi uso la formula per determinarne l’elemento d’area \(d\Sigma\):

\[
|\Sigma_u \times \Sigma_v| = \sqrt{1 + |\nabla z|^2} \\
z_u = u, \quad z_v = 2v \\
|\Sigma_u \times \Sigma_v| = \sqrt{1 + u^2 + 4v^2}
\]

L’area si calcola quindi come:

\[A_\Sigma = \int_{\{u^2+4v^2\leq 8\}} \sqrt{1 + u^2 + 4v^2} \, du \, dv \]

Introduco le coordinate ellittico-polari, e riscrivo il dominio come:

\[\{(u, v) \text{ t.c. } u^2/8 + v^2/2 \leq 1\} \]

Pongo:

\[u = 2\sqrt{2\rho} \cos \theta, \quad v = \sqrt{2\rho} \sin \theta \]

Con il cambio di variabili l’equazione che definisce il dominio diventa:

\[u^2/8 + v^2/2 = \rho^2 \leq 1 \]

quindi

\[T^{-1}(D) = \{(\rho, \theta) \text{ t.c. } 0 < \theta < 2\pi, \ 0 \leq \rho \leq 1\} \]

Calcolo il determinante jacobiano della trasformazione:

\[
J_T = \begin{pmatrix}
2\sqrt{2} \cos \theta & -2\sqrt{2} \rho \sin \theta \\
\sqrt{2} \sin \theta & \sqrt{2} \rho \cos \theta
\end{pmatrix}
\]

\[
\det J_T = 2\sqrt{2} \cos \theta \sqrt{2} \rho \cos \theta + 2\sqrt{2} \sqrt{2} \rho \sin^2 \theta = 4\rho
\]

\[
\int_0^{2\pi} \left[\int_0^1 4\rho \sqrt{1 + 8\rho^2 \cos^2 \theta + 8\rho^2 \sin^2 \theta} \, d\rho \right] \, d\theta
\]
Risolvo l'integrale per sostituzione:

\[t = 8\rho^2 + 1, \quad \rightarrow \quad dt = 16\rho d\rho \]
\[\rho = 1 \quad \rightarrow \quad t = 9 \]
\[\rho = 0 \quad \rightarrow \quad t = 1 \]
\[1/4 \ast 2\pi \int_1^9 \sqrt{t} dt \]
\[\pi/22/3[t^{3/2}]_1^9 = \]
\[\pi/3[9^{3/2} - 1] = \pi/3 \ast (27 - 1) = 26\pi/3 \]

Esercizio 10.5

Calcolare l'integrale:

\[\int \frac{x}{\sqrt[3]{4z + 1}} d\Sigma \]

dove

\[\Sigma = \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } z = x^2 + y^2, \land x^2 + y^2 - y \leq 0, \ y \geq 1/2 \lor x \geq 0\}. \]

La disuguaglianza \(x^2 + y^2 - y \leq 0\) definisce l’interno di un cerchio. Con il metodo del completamento dei quadrati ottengo:

\[x^2 + y^2 - y + 1/4 \leq 1/4 \]
\[x^2 + (y - 1/4)^2 \leq 1/4 \]

cioè il dominio parametrico \(A\) della superficie è dato da un cerchio di raggio \(1/2\) e centro in \((0, 1/2)\), a cui tolgo lo spicchio in cui \(x \leq 0\) e \(y \leq 1/2\).

La superficie ha equazioni parametriche:

\[
\begin{cases}
 x = u \\
 y = v \\
 z = u^2 + v^2
\end{cases}
\]

ed è una superficie cartesiana, con \(f(x, y) = x^2 + y^2 \), allora vale la formula:

\[|\Sigma_u \times \Sigma_v| = \sqrt{1 + (|\nabla f|)^2} = \sqrt{1 + 4x^2 + 4y^2} \]

Allora integrando, e scrivendo \(\frac{x}{\sqrt{4u^2 + 4v^2 + 1}} = \frac{u}{\sqrt{1 + 4(u^2 + v^2)}} \) ottengo:

\[\int_A \frac{u}{\sqrt{4u^2 + 4v^2 + 1}} \ast \sqrt{4u^2 + 4v^2 + 1} du dv \]
\[= \int_A u \, du \, dv \]

Spezzo \(A \) in due parti e lo scrivo come:

\[A_1 = \{(u, v) \mid u^2 + v^2 - v \leq 0, \quad v \geq 1/2\} \]
\[A_2 = \{u^2 + v^2 - v \leq 0, \quad u \geq 0, \quad v \leq 1/2\} \]

\(A_1 \) è un dominio simmetrico rispetto alla variabile \(u \) ed è la metà superiore del cerchio, allora l'integrale di una funzione dispari su un dominio simmetrico è nulla, e rimane da calcolare:

\[\int_{A_2} u \, du \, dv = \]

Scrivo le disuguaglianze che definiscono \(A_2 \):

\[u^2 \leq v - v^2 \]
\[\rightarrow -\sqrt{v - v^2} \leq u \leq \sqrt{v - v^2} \]
\[0 \geq 0 \rightarrow 0 \leq u \leq \sqrt{v - v^2} \]

Inoltre si ha \(0 \leq v \leq 1/2 \):

\[\int_0^{1/2} \int_0^{\sqrt{v-v^2}} u \, du \, dv = \]
\[\int_0^{1/2} \left[u^2 / 2 \right]_0^{\sqrt{v-v^2}} dv = \]
\[1/2 \int_0^{1/2} v - v^2 \, dv = \]
\[1/2 \left[v^2 / 2 - v^3 / 3 \right]_0^{1/2} = \]
\[1/2 \left[1/8 - \frac{1}{24} \right] = 1/24 \]

Esercizio 10.6

Si calcoli

\[\iint_{\Sigma} (z + y^2) \, d\sigma \]

dove \(\Sigma \) è la semisfera superiore di centro l'origine e raggio \(R \).

La semisfera si parametrizza con le coordinate:

\[x \mapsto R \sin \phi \cos \theta, \quad y \mapsto R \sin \phi \sin \theta, \quad z \mapsto R \cos \phi \]
\[f = z + y^2 = R \cos \phi + R^2 \sin^2 \phi \sin^2 \theta \]
Quindi

\[\int f \, d\sigma = \int_K |S_\theta \times S_\phi| f(S(\phi, \theta)) \, d\theta \, d\phi \]

\[S_\theta = (-R \sin \phi \sin \theta, R \sin \phi \cos \theta, 0) \]

\[S_\phi = (R \cos \phi \cos \theta, R \cos \phi \sin \theta, -R \sin \phi) \]

\[S_\theta \times S_\phi = [-R^2 \sin^2 \phi \cos \theta, -R^2 \sin \theta \sin^2 \phi, -R^2 \sin \phi \cos \phi \sin^2 \theta - R^2 \sin \phi \cos \phi \cos^2 \theta] \]

\[S_\theta \times S_\phi = [-R^2 \sin^2 \phi \cos \theta, -R^2 \sin^2 \phi \sin \theta, -R^2 \sin \phi \cos \phi] \]

\[|S_\theta \times S_\phi| = \sqrt{R^4 \sin^4 \phi \cos^2 \theta + R^4 \sin^4 \phi \sin^2 \theta + R^4 \sin^2 \phi \cos^2 \phi} \]

\[\sqrt{R^4 \sin^4 \phi + R^4 \sin^2 \phi \cos^2 \phi} \]

\[\sqrt{R^4 \sin^2 \phi} = R^2 \sin \phi \]

\[K = [0, 2\pi] \times [0, \pi/2] \]

\[\int_0^{2\pi} \int_0^{\pi/2} R^2 \sin \phi (R \cos \phi + R^2 \sin^2 \phi \sin^2 \theta) \, d\phi \, d\theta \]

\[\int_0^{2\pi} \int_0^{\pi/2} R^2 (R \cos \phi \sin \phi + R^2 \sin^3 \phi \sin^2 \theta) \, d\phi \, d\theta \]

\[\int_0^{2\pi} R^3 \, d\theta \int_0^{\pi/2} 1/2 \sin 2\phi \, d\phi + \int_{R^4}^{2\pi} \int_0^{\sin^2 \theta} \int_0^{\pi/2} \sin^3 \phi \, d\phi \, d\theta = \]

Calcolo i quattro integrali:

1. \[\int_0^{2\pi} R^3 \, d\theta = 2\pi R^3 \]

2. \[\int_0^{\pi/2} 1/2 \sin(2\phi) \, d\phi = [-1/4 \cos(2\phi)]_0^{\pi/2} = -1/2 \]

3. \[R^4 \int_0^{2\pi} \sin^2 \theta \, d\theta = R^4 [\theta/2 + 1/4 \sin(2\theta)]_0^{2\pi} = 2R^4 \pi \]

4. Integro per parti \sin^3 \phi :

\[\int \sin^3 \phi \, d\phi = \int \sin^2 \phi \sin \phi \, d\phi = \]

\[f(x) = \sin^2 \phi, \quad f'(x) = 2 \sin \phi \cos \phi, \quad g(x) = -\cos \phi, \quad g'(x) = \sin \phi \]

\[\sin^2 \phi \cos \phi - \int 2 \sin \phi \cos \phi \cos \phi \, d\phi = \]
\[
\sin^2 \phi \cos \phi - 2 \int \sin \phi + 2 \int \sin^3 \phi \, d\phi =
\]
ed eguagliando al primo membro:
\[
\int \sin^3 \phi \, d\phi = -\sin^2 \phi \cos \phi + 2 \int \sin \phi \, d\phi =
\]
Quindi si ha
\[
\int_0^{\pi/2} \sin^3 \phi \, d\phi = \left[-\sin^2 \phi \cos \phi - 2 \cos \phi \right]_0^{\pi/2} = 2
\]
Quindi complessivamente si ottiene:
\[-2\pi R^3 * 1/2 + 2 * 2\pi R^4 = \pi R^3 (2R - 1)\]

Esercizio 10.7

Si calcoli l’area della superficie regolare di sostegno

\[\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, \sqrt{x^2 + y^2} \leq \frac{1}{2}, z \geq 0\}.\]

Parametrizzo la superficie come:

\[x = \sin \phi \cos \theta, \quad y = \sin \phi \sin \theta, \quad z = \cos \phi\]

Determino il dominio su cui \(\Sigma\) è definita:
\[
\sqrt{x^2 + y^2} \leq 1/2 \quad \Rightarrow \quad \sqrt{\sin^2 \phi \cos^2 \theta + \sin^2 \phi \sin^2 \theta} \leq 1/2
\]
\[\Rightarrow \sqrt{\sin^2 \phi} \leq 1/2, \sin \phi \leq 1/2\]
quindi
\[0 \leq \phi \leq \pi/6 \lor 5\pi/6 \leq \phi \leq 2\pi\]

Inoltre:
\[z \geq 0 \quad \Rightarrow \quad \cos \phi \geq 0\]
\[0 \leq \phi \leq \pi/2 \lor 3\pi/2 \leq \phi \leq 2\pi\]

Quindi in conclusione:
\[0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi/6, \lor 3\pi/2 \leq \phi \leq 2\pi\]
e quindi
\[-\pi/2 \leq \phi \leq \pi/6\]
Come già calcolato precedentemente:

$$|\sigma_\phi \times \sigma_\theta| = \sin \phi$$

Quindi l’area di questa superficie è:

$$\int_0^{2\pi} d\theta [\int_{-\pi/2}^{\pi/6} \sin \phi \, d\phi] =$$

$$= 2\pi \times [-cos \phi]_{-\pi/2}^{\pi/6} = -2\pi \times \sqrt{3}/2 = \sqrt{3}\pi$$
Capitolo 11

Teoremi di Green Stokes e della divergenza

11.1 Richiami teorici

1. Sia $\mathbf{F}(x, y, z) = (f_1, f_2, f_3)$ un campo vettoriale in \mathbb{R}^3 e supponiamo che sia definito in un aperto connesso D di \mathbb{R}^3 e che sia di classe C^1. Sia Σ una superficie regolare contenuta in D, e sia \hat{n} il versore normale alla superficie. Si definisce flusso di \mathbf{F} attraverso Σ la quantità

$$\int_{\Sigma} \mathbf{F} \cdot \hat{n} \, d\Sigma.$$

2. Sia $D \subset \mathbb{R}^3$ limitato, la cui frontiera è unione disgiunta di un numero finito di superfici chiuse. Supponiamo inoltre che D sia decomponibile in un numero finito di sottodomini semplici rispetto agli assi. Se f è una funzione di classe C^1 allora valgono le formule:

$$\int \frac{\partial f}{\partial x} \, dx \, dy \, dz = \int_{\partial D} f \hat{n}_1 \, d\Sigma,$$
$$\int \frac{\partial f}{\partial y} \, dx \, dy \, dz = \int_{\partial D} f \hat{n}_2 \, d\Sigma,$$
$$\int \frac{\partial f}{\partial z} \, dx \, dy \, dz = \int_{\partial D} f \hat{n}_3 \, d\Sigma.$$

3. teorema della divergenza: Il flusso del campo vettoriale \mathbf{F} attraverso la superficie Σ è pari a

$$\int_{D} \nabla \cdot \mathbf{F} \, dx \, dy \, dz$$

quando $\Sigma = \partial D$.

4. Considero una superficie parametrizzata dalle equazioni $R: T \subset \mathbb{R}^2 \to \mathbb{R}^3$. R è di classe C^1 e iniettiva in T, inoltre $J_r(u, v)$ ha rango 2. Il teorema di Stokes afferma che, dato un campo vettoriale \mathbf{F} il flusso del rotore di \mathbf{F} attraverso Σ è pari alla circuitazione di \mathbf{F} sul trasformato mediante le equazioni parametriche r del bordo di T parametrizzato.

$$\int_{\Sigma} \nabla \times \mathbf{F} \cdot \hat{n} \, d\Sigma = \int_{r(\partial \Sigma)} (f_1 \, dx + f_2 \, dy + f_3 \, dz)$$
Il flusso dipende a meno di un segno dal versore normale.

11.2 Teoremi di Green Stokes e della divergenza

Esercizio 11.1

Consideriamo una curva di equazione polare:

\[\rho = f(\theta) \]

con \(\theta \in (\theta_0, \theta_1) \). Se \(D \) è il dominio limitato tale che \(\partial D = \gamma \)

1. si dimostri che l’area di \(D \) vale:

\[
\int_{\theta_0}^{\theta_1} \frac{1}{2}(f(\theta))^2 \, d\theta
\]

2. Calcolare l’area racchiusa dalla curva \(\rho = 1 + \cos \theta \) con \(\theta \in [0, 2\pi] \).

Scelte le coordinate

\[x = \rho \cos \theta, \quad y = \rho \sin \theta \]

osserviamo che la curva \(\gamma \) ha equazioni parametriche:

\[x = f(\theta) \cos \theta, \quad y = f(\theta) \sin \theta \]

con \(\theta_0 < \theta < \theta_1 \).

Allora

\[
\text{area } D = \int_{D} 1 \, dx \, dy
\]

\[
= \frac{1}{2} \int_{D} 1 + 1 \, dx \, dy
\]

Trasformo questo integrale doppio in un integrale di linea con il teorema di Gauss-Green. Poniamo:

\[
1 = \frac{\partial f}{\partial x}, \quad 1 = \frac{\partial g}{\partial y}
\]

Risolvo le equazioni differenziali:

\[
\frac{\partial f}{\partial x} = 1 \quad \longrightarrow \quad f = x
\]

\[
\frac{\partial f}{\partial y} = 1 \quad \longrightarrow \quad f = y
\]
allora

\[
\text{area}_D = \frac{1}{2} \int_D \frac{\partial F}{\partial x}(x, y) + \frac{\partial G}{\partial y}(x, y) \, dx \, dy
\]

\[
= \frac{1}{2} \int_{\partial + D} f \, dy - \int_{\partial + D} g \, dx =
\]

\[
= \frac{1}{2} \left[\int_{\partial + D} (xdy - ydx) \right]
\]

Sostituisco l’espressione polare della curva, tenendo conto che:

\[
dx = f'(\theta) \cos \theta - f(\theta) \sin \theta
\]

\[
dy = f'(\theta) \sin \theta + f(\theta) \cos \theta
\]

\[
\text{area}_D = \frac{1}{2} \int_{\theta_0}^{\theta_1} f(\theta) \cos \theta \ast [f'(\theta) \sin \theta + f(\theta) \cos \theta] - f(\theta) \sin \theta [f'(\theta) \cos \theta - f(\theta) \sin \theta] \, d\theta
\]

\[
= \frac{1}{2} \int_{\theta_0}^{\theta_1} f(\theta) \cos \theta \ast f'(\theta) \sin \theta + (f(\theta))^2 \cos^2 \theta - f(\theta) \sin \theta f'(\theta) \cos \theta + (f(\theta))^2 \sin^2 \theta \] \, d\theta
\]

\[
= \int_{\theta_0}^{\theta_1} (f(\theta))^2 \cos^2 \theta + (f(\theta))^2 \sin^2 \theta \, d\theta = \frac{1}{2} \int_{\theta_0}^{\theta_1} (f(\theta))^2 \, d\theta \quad \text{formula per l’area}
\]

Nel caso \(\rho = 1 + \cos \theta \) si ha:

\[
\text{area} = \frac{1}{2} \int_0^{2\pi} (1 + \cos \theta)^2 \, d\theta
\]

\[
\text{area} = \frac{1}{2} \int_0^{2\pi} 1 + 2 \cos \theta + \cos^2 \theta \, d\theta
\]

\[
\text{area} = \frac{1}{2} \int_0^{2\pi} 1 + 2 \cos \theta + 1/2 \ast (1 + \cos(2\theta)) \, d\theta
\]

\[
\text{area} = \frac{1}{2} \int_0^{2\pi} 3/2 + 2 \cos \theta + 1/2 \cos(2\theta) \, d\theta
\]

\[
\text{area} = \frac{1}{2} \int_0^{2\pi} 3/2 \theta + 2 \sin \theta + 1/4 \sin(2\theta) \] \, d\theta
\]

\[
\text{area} = 1/23/2 \pi = 3\pi/2
\]

Esercizio 11.2

Calcolare il flusso del campo vettoriale \(\mathcal{F}(x, y, z) = (-x, x, 1) \) attraverso la superficie del solido

\(A = \{(x, y, z) \in \mathbb{R}^3 \, \text{t.c.} \, x^2 + y^2 \leq z \leq 4\} \)

in modo diretto e con il teorema della divergenza. Il versore normale alla superficie deve essere orientato verso l’esterno della superficie.

Calcolo diretto: uso direttamente la definizione di flusso: \(\int f \cdot \hat{n} \, ds \).
\[z = x^2 + y^2 \] è un paraboloide, e ne considero l’interno (\(z > x^2 + y^2 \)). Il paraboloide viene tagliato ad altezza \(z = 4 \) e il solido complessivo assomiglia ad una scodella.

La superficie esterna di \(A \) ha due parti: il paraboloide di equazione \(z = x^2 + y^2 \) (che chiamo \(\Sigma_2 \) e ha equazioni parametriche \(r_2 \)) e la parte di piano \(z = 4 \) (che chiamo \(\Sigma_1 \) e ha equazioni parametriche \(r_1 \)).

\[
\int_A f \cdot \hat{n}_e \, d\Sigma = \\
\int_{\Sigma_1} f \cdot \hat{n}_e \, d\Sigma + \int_{\Sigma_2} f \cdot \hat{n}_e \, d\Sigma
\]

Il versore normale a \(\Sigma_1 \) è diretto come l’asse \(z \), mentre quello normale a \(\Sigma_1 \) è diretto dalla parte opposta.

Parametrizzo la frontiera di \(\Sigma_1 \) :

\[
\partial r_1 = \{ x = u, y = v, z = f(u, v) = 4 \} \\
r_u(u, v) = (1, 0, 0) \\
r_v(u, v) = (0, 1, 0)
\]

quindi

\[
r_u \times r_v = (0, 0, 1) \\
\hat{n} = \frac{1}{\| (0, 0, 1) \|} * (0, 0, 1)
\]

\[
\int_{\Sigma_1} f \cdot \hat{n}_e \, d\Sigma = \\
= \int_{\Sigma_1} (-x, x, 1) \cdot (0, 0, 1) \frac{1}{\| (0, 0, 1) \|}(0, 0, 1) \, du \, dv
\]

(l’elemento d’area \(dA = \| (0, 0, 1) \| \, du \, dv \))

\[
= \int_{\Sigma_1} 1 \, du \, dv
\]

\(\Sigma_1 = \{ u^2 + v^2 \leq 4 \} \)

quindi

\[
\int_{\Sigma_1} 1 \, du \, dv = 4\pi \quad \text{area del cerchio}
\]

Invece, le equazioni parametriche del paraboloido sono:

\[
r_2 = \{ x = u, y = v, z = u^2 + v^2 \} \\
r_u = (1, 0, 2u)
\]
Capitolo 11. Teoremi di Green Stokes e della divergenza

\[r_v = (0, 1, 2v) \]
\[r_u \times r_v = (-2u, -2v, 1) \]

e siccome bisogna scegliere il versore normale orientato in senso esterno:

\[\hat{n}_e = \frac{(2u, 2v, -1)}{|(2u, 2v, -1)|} \]

\[
\int_{\Sigma_2} f \cdot \hat{n}_e \, d\Sigma
= \int_{\Sigma_2} (-u, u, 1) \cdot \frac{(2u, 2v, -1)}{|2u, 2v, -1|} |2u, 2v, -1| \, du \, dv
\]

\[
\int_{\Sigma_2} -2u^2 + 2uv - 1 \, du \, dv
\]

Passo a coordinate polari:

\[
\int_{[0,2] \times [0,2\pi]} -2\rho^2 \cos^2 \theta + 2\rho^2 \cos \theta \sin \theta - 1\rho \, d\rho \, d\theta
\]

\[
\int_0^{2\pi} \left(\int_0^2 -2\rho^3 \cos^2 \theta + 2\rho^3 \cos \theta \sin \theta - \rho \right) \, d\rho \, d\theta
\]

\[
\int_0^{2\pi} \left[-1/2\rho^4 \cos^2 \theta + 1/2\rho^4 \cos \theta \sin \theta - \rho^2/2|\rho|^2 \right] \, d\theta
\]

\[
\int_0^{2\pi} -8 \cos^2 \theta + 8 \cos \theta \sin \theta - 2 \, d\theta
\]

\[
= \int_0^{2\pi} -4(1 + \cos(2\theta)) + 4 \sin 2\theta - 2 \theta \, d\theta
\]

\[
= -4\theta + 2 \sin(2\theta) + 4 \cos 2\theta - 2\theta \bigg|_0^{2\pi} = -12\pi
\]

Allora il flusso totale è dato dalla somma dei flussi attraverso le due parti di superfici:

\[= 4\pi - 12\pi = -8\pi \]

Calcolo con il teorema della divergenza:

\[\nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial f_1}{\partial x}(x, y, z) + \frac{\partial f_2}{\partial y}(x, y, z) + \frac{\partial f_3}{\partial z}(x, y, z) = -1 \]

Il teorema della divergenza afferma:

\[
\int_{A} \mathbf{F} \cdot \hat{n}_e = \int_{A} \nabla \cdot \mathbf{F} \, dx \, dy \, dz = \int_{A} -1 \, dx \, dy \, dz
\]

\[A = \{(x, y, z) \in \mathbb{R}^3 \text{ t.c. } x^2 + y^2 \leq z \leq 4\} \]

Integro per strati: per \(0 \leq h \leq 4 \) definisco la sezione
\[A_h = \{ x^2 + y^2 \leq h \} \]
cioè \(A_h \) è un cerchio di centro l’origine e raggio \(\sqrt{h} \).

\[
\int_0^4 \left[\int_{A_h} -1 \, dx \, dy \right] \, dh
\]

L’integrale interno è l’area del cerchio di centro l’origine e raggio \(\sqrt{h} \).

\[
- \int_0^4 \pi h \, dh
\]

\[
\left[\frac{\pi h^2}{2} \right]_0^4 = -8\pi
\]

Esercizio 11.3

Si consideri la curva

\[
\gamma = \begin{cases}
2x^2 + y^2 - 6x = 0 \\
x + z = 3
\end{cases}
\]

orientata in modo tale che la sua proiezione sul piano \((x, y)\) sia percorsa in senso antiorario. Calcolare

\[
\int_\gamma (z \, dx + x \, dy + y \, dz)
\]

sia direttamente sia usando il teorema di Stokes.

Calcolo diretto: la curva è intersezione di due superfici:

1. \[2x^2 + y^2 - 6x = 0 \]
 \[2(x^2 - 3x) + y^2 = 0 \]
 \[2(x^2 - 3x + 9/4) + y^2 - 9/2 = 0 \]
 \[2(x - 3/2)^2 + y^2 - 9/2 = 0 \]
 \[4/9(x - 3/2)^2 + 2/9 \cdot y^2 = 1 \]
 \[\frac{(x - 3/2)^2}{9/4} + \frac{y^2}{9/2} = 1 \] cilindro ellittico

2. \(x + z = 3 \) è l’equazione di un piano.

Quindi la curva è data dall’intersezione tra il cilindro e il piano ed è una curva chiusa.

Allora per parametrizzare la curva pongo:
\[
\begin{aligned}
\begin{cases}
(x-3/2)^2 &= \cos^2 \theta \\
y^2 &= \sin^2 \theta \\
(x - 3/2) \ast 2/3 &= \cos \theta \\
\sqrt{2/3} y &= \sin \theta
\end{cases}
\end{aligned}
\]

Quindi ottengo:

\[
\begin{aligned}
x &= 3/2 + 3/2 \cos \theta \\
y &= \frac{3}{\sqrt{2}} \sin \theta \\
z &= 3/2 - 3/2 \cos \theta
\end{aligned}
\]

Sostituisco quest’espressione nell’integrale:

\[
\int_0^{2\pi} \left(3/2 - 3/2 \cos \theta\right) \ast (-3/2 \sin \theta) + (3/2 + 3/2 \cos \theta) \ast \frac{3}{\sqrt{2}} \cos \theta + \frac{3}{\sqrt{2}} \sin \theta + 3/2 \sin \theta \, d\theta
\]

\[
\int_0^{2\pi} -9/4 \sin \theta + 9/4 \cos \theta \sin \theta + \frac{9}{2\sqrt{2}} \cos \theta + \frac{9}{2\sqrt{2}} \cos^2 \theta + \frac{9}{2\sqrt{2}} \sin^2 \theta \, d\theta
\]

\[
\int_0^{2\pi} -9/4 \sin \theta + 9/4 \cos \theta \sin \theta + \frac{9}{2\sqrt{2}} \cos \theta + \frac{9}{2\sqrt{2}} \sin \theta + \frac{9}{2\sqrt{2}} \sin^2 \theta \, d\theta
\]

\[
\left[9/4 \cos \theta + 9/8 \sin (2\theta) + \frac{9}{2\sqrt{2}} \sin \theta + \frac{9}{2\sqrt{2}} \theta\right]^{2\pi}_0
\]

\[
= \frac{9}{\sqrt{2}} \pi
\]

Calcolo con il teorema di Stokes: Invece di calcolare direttamente l’integrale del flusso, calcolo:

\[
\int_{\Sigma} \nabla \times F \cdot \hat{n}_e \, d\Sigma
\]

In questo caso la curva \(\gamma \) è \(r(\Sigma) \), vogliamo quindi cercare una superficie il cui bordo sia la curva \(\gamma \)

Scelgo come superficie \(\Sigma \) la parte di piano \(x + y = 3 \) contenuta nel cilindro ellittico, e il suo bordo coincide con la curva \(\gamma \) in \(\mathbb{R}^2 \) di equazione \(2x^2 + y^2 - 6x = 0 \)

Parametrizzo la superficie come:

\[
\Sigma = \{ x = u, y = v, z = 3 - u \}
\]

allora

\[
r_u \times r_v = (1, 0, -1) \times (0, 1, 0) = (1, 0, 1)
\]

Per il teorema di Stokes:
\[\int_{\gamma} (z \, dx + x \, dy + y \, dz) = \int_{\sigma} \nabla \times (z, x, y) \cdot \hat{n}_v \, d\Sigma \]

Simbolicamente

\[\nabla \times \mathcal{F} = \nabla \times (f_1, f_2, f_3) \quad \text{con} \quad \nabla = (\partial_x, \partial_y, \partial_z) \]

\[\nabla \times (z, x, y) = (1, 1, 1) \]

\[= \int_{\sigma} (1, 1, 1) \cdot (1, 0, 1) \cdot \frac{1}{|\mathbf{n}(1, 0, 1)|} \, d\Sigma \]

e scrivendo come integrale doppio e tenendo conto che:

\[d\Sigma = |(1, 0, 1)| \, du \, dv \]

ottengo

\[= \int_{\Sigma} (1, 1, 1) \cdot (1, 0, 1) \cdot \frac{1}{|(1, 0, 1)|} |(1, 0, 1)| \, du \, dv \]

\[= \int_{E} 2 \, du \, dv \]

con

\[E = \{(u, v) \in \mathbb{R}^2 \, t.c. \, 2u^2 + v^2 - 6u \leq 0\} \]

Tenendo conto che l’area dell’ellisse è pari a \(\pi ab \) ottengo:

\[\int_{E} 2 \, du \, dv = 2\pi ab = 2\pi \frac{3}{\sqrt{2}} \cdot \frac{3}{2} = \frac{9}{\sqrt{2}} \pi \]

Esercizio 11.4

Sia \(\mathcal{F} \) un campo vettoriale di classe \(C^1 \) definito in un qualsiasi insieme \(D \) contenente la sfera \(B_{r,0} \).

Dimostrare che il flusso del rotore di \(\mathcal{F} \) uscente dalla superficie della sfera unitaria è nullo.

Le equazioni parametriche della superficie sferica sono

\[r = \begin{cases} x = \sin \phi \cos \theta \\ y = \sin \phi \sin \theta \\ z = \cos \phi \end{cases} \]

con \(\phi \in (0, \pi) \) e \(\theta \in (0, 2\pi) \).

Per il teorema di Stokes, calcolare il flusso attraverso la superficie equivale a calcolare l’integrale
Capitolo 11. Teoremi di Green Stokes e della divergenza

\[
\int_{\Gamma} [f_1 \, dx_1 + f_2 \, dx_2 + f_3 \, dx_3]
\]

Il dominio parametrico della superficie è \(T = [0, 2\pi] \times [0, \pi] \) ed è un rettangolo. Scegliamo un’orientazione antioraria.

\[\partial D = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \]

Scrivo le espressioni delle quattro componenti della curva, e poi ne faccio l’immagine attraverso le equazioni parametriche della sfera.

\[\gamma_1 = \phi = 0, \ \theta = t, \ t \in [0, 2\pi] \]
\[r(\gamma_1) = \{x = 0, \ y = 0, \ z = 1\} \quad \text{polo nord} \]

\[\gamma_2 = \phi = t, \ \theta = 2\pi, \ t \in [0, \pi] \]
\[r(\gamma_2) = \{x = \sin t, \ y = 0, \ z = \cos t\} \quad \text{arco che congiunge polo nord e polo sud} \]

\[\gamma_3 = \phi = \pi, \ \theta = 2\pi - t, \ 0 \leq t \leq 2\pi \]
\[r(\gamma_3) = \{x = 0, \ y = 0, \ z = -1\} \quad \text{polo sud} \]

\[\gamma_4 = \phi = \pi - t, \ \theta = 0, \ 0 \leq t \leq \pi \]
\[r(\gamma_4) = \{x = \sin(\pi - t) = \sin t, \ y = 0, \ z = \cos(\pi - t) = -\cos t\} \quad \text{arco che congiunge il polo sud al polo nord} \]

Il bordo della superficie sferica \(\partial B_{1,0} \) è il trasformato del bordo di \(T \) mediante le equazioni parametriche \(r \) , quindi \(r(\gamma_1) \cup r(\gamma_2) \cup r(\gamma_3) \cup r(\gamma_4) \).

Per il teorema di Stokes

\[
\int_{B_{0,r}} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\Sigma = \int_{r(\gamma_1) \cup r(\gamma_2) \cup r(\gamma_3) \cup r(\gamma_4)} f_1 \, dx_1 + f_2 \, dx_2 + f_3 \, dx_3
\]

ma gli integrali su \(r(\gamma_1) \) e \(r(\gamma_3) \), che sono punti, sono nulli, allora rimane:

\[
\int_{r(\gamma_2)} (f_1 \, dx + f_2 \, dy + f_3 \, dz) + \int_{r(\gamma_4)} (f_1 \, dx + f_2 \, dy + f_3 \, dz)
\]

e questi due integrali sono uguali ed opposti, allora il flusso attraverso la superficie sferica è nullo.

Esercizio 11.5

Calcolare il flusso di \(\mathbf{F}(x, y, z) = (ye^{x+y}, -xe^{x+y}, xy) \) attraverso la frontiera del solido

\[A = \{ (x, y, z) \in \mathbb{R}^3 \text{ t.c.} |y| \leq x \leq 2 - |y|, \ 0 \leq z \leq x + y \} \]
\(z \) è compreso tra i grafici di due piani: \(z = 0 \) e \(z = x + y \), quindi ha una regione \(z \)- semplice.

\[
- x \leq y \leq x \\
|y| \leq 2 - x \rightarrow x - 2 \leq y \leq 2 - x
\]

Il solido ha come proiezione sul piano un quadrato ed è un poliedro di sei facce.

In questo caso conviene usare il teorema della divergenza.

\[
\int_{\partial A} f \cdot \hat{n}_e \, d\Sigma = \int_A \nabla \cdot \mathbf{F}(x, y, z) \, dx \, dy \, dz
\]
e calcolò l’integrale al secondo membro.

\[
\nabla \cdot \mathbf{F} = y \cdot e^{xy} - x \cdot e^{x+y} = (y - x) \cdot e^{x+y}
\]

Integro per fili rispetto a \(z \):

\[
\int_E \left[\int_0^{x+y} (y - x) \cdot e^{x+y} \, dz \right] \, dx \, dy = \int_E (y - x) \cdot (y + x) \cdot e^{x+y} \, dx \, dy
\]

Risolvo questo integrale per sostituzione ponendo \(v = x - y \), \(u = y + x \), cioè:

\[
\begin{cases}
 x = (u + v)/2 \\
 y = (u - v)/2
\end{cases}
\]

Allora lo jacobiano della trasformazione è:

\[
\begin{pmatrix}
 u/2 & v/2 \\
 u/2 & -v/2
\end{pmatrix}
\]

\[
\det J = -uv/4 - uv/4 = -uv/2 \neq 0
\]

Allora l’integrale diventa:

\[
\int_E v \cdot u \cdot e^{uv}/2 \, du \, dv
\]

\[
1/2 \ast \int_E v^2 \cdot u^2 \cdot e^u \, du \, dv
\]

\[-x \leq y \leq x \rightarrow -u - v \leq u - v \leq u + v
\]

\[
\begin{cases}
 x - 2 \leq y \leq 2 - x \rightarrow u + v - 1 \leq u - v \leq 1 - u - v \\
 u + v - 1 \leq u - v \leq 1 - u - v \\
 -u - v \leq u - v \leq u + v
\end{cases}
\]
\[
\begin{cases}
 u + v - 1 \leq u - v \leq 1 - u - v \\
 1 - u - v \leq 1 + u - v \leq 1 + u + v \\
 u + v - 1 \leq u - v \leq 1 + u - v \leq 1 + u + v \\
 -1 \leq -2v \leq 1 \\
 -1 \leq -2v \rightarrow 1 \geq 2v \rightarrow v \leq 1/2 \\
 1 - 2v \leq 1, \rightarrow -2v \leq 0 \rightarrow v \geq 0
\end{cases}
\]

quindi

\[0 \leq v \leq 1/2\]

Se considero l’equazione:

\[u - v \leq 1 - u - v \leq 1 - u - v\]

sottraendo \(-v\) a tutti i membri ottengo:

\[u \leq 1 - u \leq 1 - u\]

\[u \leq 1 - u \rightarrow u \geq 1/2\]

\[u - 1 \leq 1 - u \rightarrow 2u \leq 2 \rightarrow u \leq 1\]

quindi

\[1/2 \leq u \leq 1\]

Allora l’integrale diventa:

\[1/2 \left[\int_{1/2}^{1} u^2 e^u \, du \right] \ast \left[\int_{0}^{1/2} v^2 \, dv \right]\]

Integrando per parti:

\[
\int u^2 e^u \, du = u^2 \ast e^u - \int 2u \ast e^u = u^2 \ast e^u - 2u \ast e^u + \int 2e^u \, du = e^u \ast (u^2 - 2u + 2)
\]

\[1/2 \left[e^u \ast (u^2 - 2u + 2) \right]_{1/2}^{1} \ast \left[u^3 / 3 \right]_{0}^{1/2} = \]

\[1/2 \left[e \ast (1 - 2 + 2) - \sqrt{e} \ast (1/4 - 1 + 2) \right] \ast \frac{1}{24} \]

\[1/2 [e - \sqrt{e} \ast 5/4] \ast \frac{1}{24} \]
Capitolo 12

Successioni

12.1 Richiami teorici

1. Considero una successione di funzioni $f_n : I \to \mathbb{R}$: si dice che $\{f_n\}$ converge puntualmente a f in D se, per ogni $t \in D$ fissato, la successione numerica $\{f_n(t)\}$ converge puntualmente a $f(t)$. D viene detto insieme di convergenza puntuale.

2. Considero poi $E \subseteq D$. Diremo che $\{f_n\}$ converge a f uniformemente in E se

$\sup_{t \in E} |f_n(t) - f(t)| \to 0 \iff n \to \infty$

3. Criterio di Weierstrass: Supponiamo che esista una successione numerica $\{a_n\}$ tale che $a_n \to 0$ per $n \to +\infty$ e $|f_n(t) - f(t)| \leq a_n$ per ogni $t \in E$. Allora c’è convergenza uniforme di $\{f_n\}$ in E.

12.2 Successioni

Esercizio 12.1

Consideriamo la seguente successione di funzioni

$f_n(t) = n^\alpha \cdot t \cdot e^{-nt}$

con α parametro reale.

1. Discutere la convergenza puntuale.

2. Determinare se c’è convergenza uniforme in intervalli del tipo $[r, +\infty)$ con $r > 0$.

3. Studiare la convergenza uniforme nell’intervallo $[0, 1]$.

Convergenza puntuale: Studiamo il limite
\[\lim_{n \to \infty} \frac{t n^\alpha}{e^{nt}} \]

al variare di \(\alpha \) e \(t \):

1. Se \(t = 0 \), \(f_n(0) = 0 \) per ogni \(\alpha \).

2. Se \(t > 0 \), il limite vale 0, infatti si hanno tre sottocasi:
 * se \(\alpha > 0 \), \(n^\alpha \to +\infty \) e \(e^{nt} \to \infty \), ma l’esponenziale al denominatore prevale quindi il limite fa 0.
 * se \(\alpha = 0 \), \(f_n(t) = nt \cdot e^{-nt} \) e il limite tende ancora a 0.
 * se \(\alpha < 0 \) si ha \(n^\alpha \to 0 \), quindi ottengo \(\frac{0}{\infty} = 0 \).

3. Nel caso in cui \(t < 0 \), il limite vale \(\infty \), infatti:
 * se \(\alpha > 0 \), \(n^\alpha \to +\infty \), \(e^{nt} \to 0 \), e \(\frac{0}{\infty} = \infty \).
 * se \(\alpha < 0 \), riscrivo il limite come
 \[\lim_{t \to \infty} \frac{t e^{-nt}}{n^{-\alpha}} \]
 con \(n^{-\alpha} \to \infty \), \(t \cdot e^{-nt} \to \infty \), ma il numeratore di ordine esponenziale prevale sul denominatore di ordine potenza.

Allora per ogni \(\alpha \in \mathbb{R} \) \(\{f_n(t)\} \) tende a \(f(t) \) definita come:

\[f(t) = \begin{cases} 0 & \text{set } \geq 0 \\ -\infty & \text{set } < 0 \end{cases} \]

Convergenza uniforme: Vogliamo dimostrare che

\[\sup_{t \geq r} |f_n(t) - f(t)| \to 0 \iff n \to +\infty \]

Siccome \(t > 0 \), \(f(t) = 0 \) e si deve avere:

\[\sup_{t \geq r} |f_n(t)| \to 0 \]

Quando la funzione non è troppo complicata, per avere informazioni sul sup è utile calcolare la derivata:

\[f'_n(t) = n^\alpha \cdot e^{-nt} + n^\alpha \cdot t \cdot e^{-nt} \cdot (-n) = n^\alpha \cdot e^{-nt} \cdot [1 - nt] \]

\[f'_n(t) = 0 \iff 1 - nt = 0 \to t = 1/n \]

Quindi:

\[f'_n(t) > 0 \iff t \in (-\infty, 1/n) \to \text{funzione crescente} \]

\[f'_n(t) < 0 \iff t \in (1/n, +\infty) \to \text{funzione decrescente} \]

La funzione assume il suo massimo in \(t = 1/n \), ma per \(n \to +\infty \), \(1/n < r \) quindi nell’intervallo \([r, \infty) \) le \(f_n \) sono definitivamente decrescenti e assumono il loro sup in \(t = r \):
\[\sup_{t>r} |f_n(r)| = n^\alpha * r * e^{-nr} \to 0 \text{ per } n \to +\infty \forall \alpha \]

quindi la convergenza è uniforme in ogni intervallo del tipo \([0, \infty)\).

Convergenza uniforme in \([0, 1]\): Verifico se

\[\sup_{t \in [0,1]} |f_n(t)| \to 0 \text{ per } t \in [0, 1] \]

il punto di massimo di \(f_n\) è \(1/n\), e in questo caso \(t = 1/n\) rientra nell’intervallo \([0, 1]\), e allora

\[\sup_{t \in [0,1]} |f_n(t)| = f_n(1/n) = n^{\alpha-1} * e^{-1} = \frac{n^{\alpha-1}}{e} \]

che tende a

\[f = \begin{cases}
\infty & \iff \alpha > 1 \\
1/e & \iff \alpha = 1 \\
0 & \iff \alpha < 1
\end{cases} \]

quindi si ha convergenza uniforme solo se \(\alpha < 1\).

Esercizio 12.2

Considero la seguente successione

\[f_n(x) = \frac{1 + \sin(nx)}{1 + (n^2x^2 - 1)^2} \]

1. Studiare la convergenza puntuale.

2. Stabilire se c’è convergenza uniforme nell’intervallo \([0, 1]\).

3. Verificare se c’è convergenza uniforme nell’intervallo \((1, +\infty)\).

Convergenza puntuale: Fisso un qualsiasi \(x\) in \(\mathbb{R}\) e studio la successione numerica \(\{f_n(x)\}\). OSSERVO CHE

\[f_n(x) \leq \frac{2}{1 + (n^2x^2 - 1)^2} \to 0 \iff x \neq 0, \ n \to \infty \]

e per il teorema del confronto tende a 0 anche \(\{f_n(x)\}\) per \(x \neq 0\).

Invece, per \(x = 0\), \(f_n(0) = \frac{1 + \sin(0)}{1 + 1} = 1/2\).

allora \(\{f_n(x)\}\) converge puntualmente a \(f\) definita come:

\[f(x) = \begin{cases}
0 & \text{se } x \neq 0 \\
1/2 & \text{se } x = 0
\end{cases} \]
Convergenza uniforme in \([0,1]\): Sappiamo che se esiste il limite uniforme su un intervallo, esso coincide con quello puntuale. Inoltre, il limite uniforme di funzioni continue (come le \(f_n\)) deve essere continuo. In questo caso, \(f\) non è continua su \([0,1]\) quindi non ci può essere convergenza uniforme su questo intervallo.

Convergenza uniforme su \([1,\infty)\): Valutiamo la quantità

\[
\sup_{x \in [1,\infty)} |f_n(x) - f(x)| = \sup_{x \in [1,\infty)} |f_n(x)|
\]

(infatti \(f\) vale 0 su \([1,\infty)\)).

Siccome \(-1 < \sin x < 1\), allora

\[
f_n \geq 0 \forall x \geq 1, \forall n
\]

Posso quindi eliminare il valore assoluto e considerare

\[
\sup_{x \in [1,\infty)} f_n(x)
\]

Si può applicare la seguente osservazione:

Osservazione 12.1

Supponiamo che

\[
\sup_{x \geq 1} |f_n(x)| \leq \sup_{x \geq 1} g_n(x)
\]

e che \(\sup g_n(x) \to 0\), allora segue che anche \(\sup |f_n(x)| \to 0\).

Voglio quindi trovare una funzione che abbia una derivata da calcolare più semplice di quella di \(f_n\): \(g_n\) deve maggiorare \(f_n\) per ogni \(n\) e per ogni \(x \in [1,\infty)\) il suo supremo deve tendere a 0.

\[
f_n(x) \leq g_n = \frac{2}{1 + (n^2x^2 - 1)^2} \forall x \in [1,\infty)
\]

Quindi, per trovare il supremo di \(g_n\), calcolo:

\[
g'_n(x) = \frac{-8x \cdot (n^2x^2 - 1) \cdot n^2}{[1 + (n^2x^2 - 1)^2]^2}
\]

\[
g'_n(x) \geq 0
\]

\[
-8x \cdot (n^2x^2 - 1) \cdot n^2 \geq 0
\]

\[
n^2x^2 - 1 \leq 0
\]

\[
x^2 \leq 1/n^2
\]

Questa disuguaglianza non è mai soddisfatta per \(x \geq 1\), allora \(g_n\) è decrescente per \(x \geq 1\) e assume il suo massimo in \(x = 1\):
e anche il sup di \(f_n \) tende a 0, quindi \(\{ f_n \} \) converge uniformemente in \([1, \infty)\).

Esercizio 12.3

Considerare la successione:

\[
\left\{ f_n(x) = [\log(1 + 1/x)]^n = [g(x)]^n \right\}
\]

studiare il comportamento e determinare tutti gli insiemi in cui c'è convergenza uniforme.

Data una successione della forma \(a_n = a^n \), osservo che:

1. per \(-1 < a < 1\) la successione tende a 0
2. per \(a = 1\) la successione è costante
3. per \(a = -1\) la successione è oscillante.
4. per \(a > 1\) la successione diverge a \(+\infty\)
5. per \(a < 1\) la successione diverge e oscilla

Da questo segue che una successione di funzioni della forma \(f_n(x) = (g(x))^n \) converge se e solo se \(-1 < g(x) < 1\). Per determinare quando questo avviene, studio la funzione \(g(x) = \log(1 + 1/x) \).

1. **Dominio**: La funzione non è definita in \(x = 0\) e \(x = -1\).
2. **Zeri della funzione**:

\[
\log(1 + 1/x) \geq 0 \iff |1 + 1/x| \geq 1
\]

\[
1 + 1/x \geq 0 \iff x \geq 0 \lor x < -1
\]

Allora

\[
g(x) = \begin{cases}
\log(1 + 1/x) & \text{se } x \geq 0 \lor x < -1 \\
\log(-1 - 1/x) & \text{se } -1 < x < 0
\end{cases}
\]

Per determinare dove la funzione si annulla, osservo che, per \(x \in (-\infty, -1) \cup (0, \infty)\) si ha:

\[
1 + 1/x = 1, \quad \rightarrow \quad 1/x = 0 \quad \text{e non ha soluzioni}
\]

Invece, per \(-1 < x < 0\)

\[
-1 - 1/x = 1 \quad \rightarrow \quad x = -1/2
\]

e la funzione passa per \((-1/2, 0)\).
3. **Segno della funzione:** Se \(x < -1 \) o \(x > 0 \)

\[
\log(1 + 1/x) \geq 0 \quad \rightarrow \quad 1 + 1/x \geq 1 \quad \rightarrow \quad 1/x \geq 0
\]

La disuguaglianza è soddisfatta se \(x > 0 \). Per \(-1 < x < 0\) invece

\[
\log(-1 - 1/x) \geq 0 \quad \iff \quad -1 - 1/x \geq 1 \quad \rightarrow \quad x > -1/2
\]

allora la funzione è negativa per \(-1 < x < -1/2\). Riassumendo:

\[
f(x) = \begin{cases}
\text{positiva per} & -1/2 < x < 0 \land x > 0 \\
\text{negativa per} & x < -1 \lor -1 < x < -1/2
\end{cases}
\]

4. **Asintoti:**

\[
\lim_{x \to \pm \infty} \log |1 + 1/x| = 0
\]

quindi la funzione ha asintoto orizzontale \(y = 0 \) per \(x \to \pm \infty \). Per \(x \to -1 \) c’è un asintoto verticale e i limiti tendono a \(-\infty\). Per \(x \to 0^- \) e \(x \to 0^+ \) il logaritmo tende a \(+\infty\).

5. **Studio della derivata:** Se \(x < -1 \lor x > 0 \), \(g'(x) = \frac{1}{1+1/x} * (-1/x^2) \) quindi \(g'(x) < 0 \forall x < -1 \lor x > 0 \). Se \(-1 < x < 0\), \(g'(x) = \frac{1}{1+1/x} * 1/x^2 \) e quindi \(g'(x) > 0 \) se \(-1 < x < 0\).

Per determinare quando \(-1 < g(x) < 1\) considero i quattro casi seguenti:

1. \(\log(1 + 1/x) = 1 \) è verificata solo se

\[
1 + 1/x = e
\]

\[
1/x = e - 1
\]

\[
x = \frac{1}{e - 1}
\]

\[
P_1(\frac{1}{e - 1}, 1)
\]

2. \(\log(1 + 1/x) = -1 \) è verificata se

\[
-1 - 1/x = e
\]

\[
x = \frac{-1}{1 + e}
\]

\[
P_2(-\frac{1}{1 + e}, 1)
\]

3. \(\log(1 + 1/x) = -1 \) se e solo se

\[
1 + 1/x = 1/e
\]

\[
1/x = (1 - e)/e
\]

\[
x = \frac{e}{1 - e} = \frac{-e}{e - 1}
\]

\[
P_3(\frac{e}{e - 1}, -1)
\]
4. $\log(-1 - 1/x) = -1$ è verificata se

$$-1 - 1/x = 1/e$$

$$1/x = -1 + 1/e = -(e + 1)/e$$

$$x = -e/(e + 1)$$

$$P_4(-e/e + 1, -1)$$

Allora dal grafico sappiamo che $-1 < g(x) < 1$ se $x < \frac{e}{e+1}$ oppure $\frac{e}{e+1} < x < \frac{1}{e-1}$ o $x > \frac{1}{e-1}$.

La convergenza uniforme può avvenire solo in sottoinsiemi dell’insieme di convergenza puntuale:

1. Studio il caso in cui $-e/(1 + e) \leq x \leq -1/(1 + e)$, e considero un sottoinsieme $[a; b]$ di questo intervallo. Se $b = -1/(1 + e)$ non c’è convergenza uniforme in $[a; b]$, perché la funzione limite non è continua su $[a; b]$. Invece, nel caso in cui $b < -1/(1 + e)$, studio la quantità:

$$\sup_{x \in [a; b]} |(\log(1 + 1/x))^n|$$

Nei punti di non derivabilità la funzione vale 0.

$$|(\log(1 + 1/x))^n| = |\log(1 + 1/x)|^n$$

$$f' = n*|\log(1+1/x)||^n-1* \frac{\log(1+1/x)}{|\log(1+1/x)|}*|1/(1+x)|*\frac{1+1/x}{|1+1/x|}*(-1/x^2)$$

Il modulo elevato a $n-1$ è positivo, $1/(1+1/x)$ è positivo, sgn$1/(1+1/x)$ è negativo in questo intervallo e c’è poi un termine negativo. Lo studio del segno della derivata si riduce a

$$\text{sgn}\log(1 + 1/x) = \begin{cases} +1 & \text{per } -1/2 < x < 0 \\ -1 & \text{per } -1 < x < -1/2 \end{cases}$$

$|f_n|$ nell’intervallo considerato è una funzione monotona decrescente in $(-a, -1/2)$ e crescente in $(-1/2, b)$. Supponiamo che $[a; b]$ contenga $x = -1/2$. Dal grafico della monotonia segue che

$$\sup_{x \in [a; b]} |f_n(x)| = \max(|f_n(a)|, |f_n(b)|)$$

Nel caso in cui $[a; b]$ è compreso tra $-e/(1 + e)$ e $-1/(e + 1)$ si ha che in ogni caso il sup è

$$= \max\{\log(-1 - 1/a)^n, \log(-1 - 1/b)^n\}$$

Ma siccome $[a; b] \subset (-e/(1 + e), -1/(e + 1))$ ed entrambe le basi sono più piccole di 1 (come studiato prima), allora per $n \rightarrow +\infty$ le funzioni valutate in a e b tendono a 0, e quindi il massimo tende a 0. Quindi c’è convergenza uniforme in tutti gli intervalli del tipo $[a; b] \subset (-e/(1 + e), -1/(1 + e))$, e nei loro sottoinsiemi.
2. Considero il caso dell’intervallo \(x > 1/(e - 1) \). Studio la derivata:

\[
f'_n(x) = n \cdot \log(1 + 1/x) - 1 \cdot \frac{1}{1 + 1/x} \cdot (-1/x^2)
\]

e la derivata è negativa per ogni \(x > -1 \). Allora la funzione è decrescente e il sup negli intervalli del tipo \((a, +\infty)\) è uguale a

\[
f_n(a) = \left(\log(1 + 1/a)\right)^n
\]

con \(a > 1/(e - 1) \) e anche in questo caso il sup tende a 0.

3. il caso \((-\infty, -e/(e - 1))\) è analogo, anche in tutti i sottointervalli di questo intervallo c’è convergenza uniforme, ma la derivata è crescente in questo caso.

Esercizio 12.4

Considero la successione di funzioni

\[
f_n(x) = e^{-n|x|}
\]
de finite in \([-1, 1]\). Discutere la validità della seguente relazione:

\[
\int_{-1}^{1} \left(\lim_{n \to +\infty} f_n(x) \right) dx = \lim_{n \to +\infty} \left[\int_{-1}^{1} f(x) dx \right]
\]

Ci si chiede se vale il passaggio al limite sotto il segno di integrale.

Sappiamo che la condizione sufficiente per questa relazione è che \(\{f_n\}\) sia una successione di funzioni continue che convergono a una funzione \(f \in [-1, 1]\). Questa condizione è sufficiente ma non necessaria: se \(f_n\) non tende a \(f\) uniformemente, potrebbe comunque valere il passaggio al limite.

Cerco il limite puntuale della successione. Osservo che \(f_n(x) = f_n(-x)\) per ogni \(x \in [-1, 1]\). Allora studio la funzione solo in \([0, 1]\).

Per \(x > 0\), \(e^{-nx} \to 0\) per \(n \to +\infty\), e lo stesso vale per \(x < 0\). Nel caso \(x = 0\) \(f_n(0) = 1\) per ogni \(n\).

Riassumendo

\[
f_n(x) \to f(x) = \begin{cases} 0 & \text{per } x \in [-1, 0) \cup (0, 1] \\ 1 & \text{per } x = 0 \end{cases}
\]

In 0 c’è una discontinuità di terza specie.

Non ci può essere convergenza uniforme, perché ho una successione di funzioni continue che converge a una funzione discontinua, mentre il limite uniforme di funzioni continue è continuo. Verifico se vale comunque la relazione *.
Valuto il primo membro:

\[\int_{-1}^{1} f(x) \, dx = \int_{-1}^{1} 0 \, dx = 0 \]

nota: le funzioni con discontinuità di terza specie sono Riemann-integrabili, e il punto di discontinuità di terza specie non viene considerato.

Considero il secondo membro:

\[\int_{-1}^{1} e^{-n|x|} \, dx = 2 \int_{0}^{1} e^{-n|x|} \, dx = 2 \int_{0}^{1} e^{-nx} \, dx = \left[-2/n e^{-nx} \right]_{0}^{1} = -2/n [1 - e^{-n}] \]

Per \(n \to +\infty \) la quantità tende a 0. Quindi ho dimostrato la validità della relazione *, anche se non vale la condizione sufficiente.

Esercizio 12.5

Si studino la convergenza puntuale e uniforme delle seguenti successioni di funzioni

1. \(f_n : [0, 1] \to \mathbb{R}, \quad f_n(x) = x^n \sin(1 - x) \)

2. \(f_n : \mathbb{R} \setminus \{1\} \to \mathbb{R}, \quad f_n(x) = 4^{-n} (\log |x - 1|)^{n+1} \)

3. \(f_n : [0, 2\pi] \to \mathbb{R}, \quad f_n(x) = \begin{cases} e^{n \log(1 - \cos \frac{x}{n})} & \text{se } x \in (0, 2\pi], \\ 0 & \text{se } x = 0, \end{cases} \)

4. \(f_n : [0, \frac{\pi}{2}] \to \mathbb{R}, \quad f_n(x) = x^4 (\sin x)^n, \)

Convergenza puntuale:

\(f_n(x) = x^n \sin(1 - x) \leq x^n * 1 \to 0 \forall x \in (0, 1] \)

Per \(x = 0 \), \(f_n(x) = 0^n * \sin 0 = 0 \). Allora la funzione converge puntualmente alla funzione nulla. **Convergenza uniforme:** Verifico se

\[\sup_{x \in [0,1]} |x^n * \sin(1 - x)| \to 0 \]

\[|x^n * \sin(1 - x)| \leq |x^n * (1 - x)| = g(x) \]

quindi

\[\sup |x^n * \sin(1 - x)| \leq \sup |x^n * (1 - x)| \]

\[\]
\[g'_n = -x^n + (1 - x) * x^{n-1} \ast n = 0 \]
\[-x + (1 - x) * n = 0 \]
\[-x + n - nx = 0 \]
\[x = \frac{n}{n+1} \]

Valutando \(g \) nel suo punto di massimo \(\frac{n}{n+1} \) si ha:
\[\sup g(x) = \left(\frac{n}{n+1} \right)^n \ast \left(1 - \frac{n}{n+1} \right) \rightarrow 0 \iff n \rightarrow \infty \]
allora anche \(f_n \leq \sup g \rightarrow 0 \) e la successione converge uniformemente.

2.
\[f_n : \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R}, \quad f_n(x) = 4^{-n}(\log |x - 1|)^{n+1} \]

Convergenza puntuale: Per \(x \neq 1 \),
\[
\lim_{n \to +\infty} \frac{(\log |x - 1|)^{n+1}}{4^n} = \]
\[
\lim_{n \to +\infty} \left(\frac{\log |x - 1|}{4} \right)^{n+1} \ast 1/4 = \]

Studio la funzione \(g(x) = 1/4 \ast \log |x - 1| \), che non si annulla mai. Studio del segno: \(g(x) > 0 \) se
\[
\log |x - 1| > 0 \rightarrow |x - 1| > 1 \]
\[
g(x) < 0 \text{ se } 0 < x < 2 .
\]

Studio della derivata:
\[
f'(x) = 1/4 \ast 1/(x-1) \text{per} x > 1 \quad f'(x) = 1/4 \ast 1/(1 - x) \ast (-1) \text{per} x < 1
\]
La funzione è decrescente prima di 1 e crescente dopo. Concluo che:## se
\[-1 < \frac{\log |x-1|}{4} < 1 \text{ la successione converge puntualmente a 0 per } n \to +\infty \]
.## se \(|\frac{\log |x-1|}{4}| > 1 \) la successione diverge quindi verifico quando sono verificate le seguenti condizioni:## \(\log(x - 1) \ast 1/4 = 1 \) se
\[
\log(x - 1) = 4
\]
\[
x = 1 + e^4 > 1
\]
\[p_1(1 + e^4, 1) \]
\(\log(x - 1) \ast 1/4 = -1 \)
\[
\log(x - 1) = -4
\]
\[
x = 1 + e^{-4} > 1
\]
\[P_2(1 + e^{-4}, -1) \]
##log(1 - x) * 1/4 = 1 se

\[
\log(1 - x) = 4
\]

\[
1 - x = e^4
\]

\[
x = 1 - e^4 < 1
\]

\[
p_3(1 - e^4, 1)
\]

##log(1 - x) * 1/4 = -1

\[
1 - x = e^{-4}
\]

\[
x = 1 - e^{-4} < 1
\]

\[
p_4(1 - e^{-4}, -1)
\]

Allora la funzione converge puntualmente negli intervalli: \((1 - e^4, 1 - e^{-4})\) e \((1 + e^{-4}, 1 + e^4)\). Convergenza uniforme: La convergenza uniforme può avvenire solo in intervalli \([a, b] \subset (1 - e^4, 1 - e^{-4}) \setminus 1\), oppure \((1 + e^{-4}, 1 + e^4)\).

\[
\text{per } x > 1 f'_n(x) = 1/4 * (n + 1) * \log(x - 1) * 1/(x - 1)
\]

\[
f'_n(x) > 0 \forall x > 1 \text{ funzione crescente}
\]

\[
\text{per } x < 1 f'_n(x) = (n + 1)(\log(-x + 1))^n * 1/(-x + 1) * (-1)
\]

Per \(x < 1\) la derivata è sempre decrescente. Allora negli intervalli \([a, b] \subset (1 + e^{-4}, 1 + e^4)\) si ha che

\[
\sup_{x \in [a, b]} f_n(x) = [g(b)]^{n+1} * 1/4 \to 0
\]

e questo è vero perché \(|g(b)| < 1\). Lo stesso vale negli intervalli dell’altro tipo.

3. \(f_n : [0, 2\pi] \to \mathbb{R}, \quad f_n(x) = \begin{cases} e^{n \log(1-\cos \frac{x}{n})} & \text{se } x \in (0, 2\pi], \\ 0 & \text{se } x = 0, \end{cases}\)

Convergenza puntuale:

\[
\lim_{n \to +\infty} e^{n \log(1-\cos \frac{x}{n})} =
\]

\[
\lim_{n \to +\infty} e^{\log((1-\cos \frac{x}{n}))^n} =
\]

\[
1 - \cos(x/n) < 1, \quad \lim (1 - \cos(x/n))^n \to 0 \iff n \to \infty,
\]

quindi il limite vale 1. Non si può avere convergenza uniforme sull’intervallo \([0, 2\pi]\), perché il limite non è continuo su tale intervallo.

4. \(f_n : \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad f_n(x) = x^4(\sin x)^n, \)

\[
\lim_{n \to +\infty} x^4 * (\sin x)^n = 0 \text{ per } x \neq \pi/2
\]

\[
f_n(\pi/2) = (\pi/2)^4
\]
Allora \(\{f_n\} \) converge puntualmente a

\[
f(x) = \begin{cases}
0 & \text{se } x \in [0, \pi/2) \\
(\pi/2)^4 & \text{se } x = \pi/2
\end{cases}
\]

Convergenza uniforme: osservo che non può esserci convergenza uniforme sull’intervallo \([0, \pi/2]\), perché il limite \(f\) non è continuo. Verifico invece se c’è convergenza uniforme in intervalli del tipo \([a, \pi/2]\):

\[
f'(x) = x^4 * n * (\sin x)^{n-1} * \cos x + 4x^3 * (\sin x)^n
\]

\[
f'_n(x) > 0
\]

\[
x^4 * n * (\sin x)^{n-1} * \cos x + 4x^3 * (\sin x)^n > 0
\]

Divido per \(x^3 * (\sin x)^{n-1}\):

\[
x * n * \cos x + 4 \sin x > 0
\]

Seno e coseno sono entrambi positivi nell’intervallo \([0, \pi/2]\), quindi la condizione è sempre verificata e la funzione assume il suo sup nel minimo dell’intervallo \(a\):

\[
f_n(a) = a^4 * (\sin a)^n
\]

e siccome \(\sin a < 1\), il sup tende a 0 per \(n \to \infty\), e si ha convergenza uniforme in questi intervalli.
Capitolo 13

Serie

13.1 Serie generiche

13.1.1 Richiami teorici

1. Consideriamo una successione di funzioni \(f_n : I \rightarrow \mathbb{R} \). Possiamo allora considerare la serie associata a tale successione, indicata col simbolo

\[
\sum_{n=0}^{+\infty} f_n(x)
\]

tale che

\[
s_1(x) = f_1(x), \quad s_2(x) = f_1(x) + f_2(x), \quad \ldots s_n(x) = f_1(x) + f_2(x) + \cdots + s_n(x) = \sum_{k=1}^{n} f_k(x)
\]

Siccome la serie è la successione delle somme parziali, i risultati validi per le successioni valgono anche per le serie.

2. Per studiare serie numeriche a segni alterni si può applicare il criterio di Leibniz: consideriamo una successione \(\{a_n\} \) a valori reali e supponiamo che \(a_n \rightarrow 0 \iff n \rightarrow \infty \) (condizione necessaria per la convergenza), e tale che definitivamente valgano le due proprietà: \(a_n \geq 0 \) e \(a_n \geq a_{n+1} \), cioè esiste \(n_0 \) tale che per ogni \(n > n_0 \) la serie è positiva ed decrescente. Allora la serie converge.

3. In uno spazio di Banach, una serie \(\sum f_n \) converge uniformemente a \(f(x) \) se

\[
|s_n - f(x)| \leq \varepsilon
\]

che implica

\[
\sup |f(x) - \sum f_n| < \varepsilon
\]

4. Se consideriamo una serie a segni alterni della forma \(\sum (-1)^n a_n \), a cui è applicabile il criterio di Leibniz, e la cui somma è \(f(x) \), è sempre vero che

\[
|s_n - f(x)| \leq a_{n+1}
\]

dove \(a_{n+1} \) è il primo termine che non compare nel termine \(n \)-esimo \(s_n = \sum_{k=1}^{n} a_k \) della serie.
5. Per le serie numeriche può essere utile applicare il **Criterio del rapporto**: Supponiamo di avere una serie a termini positivi $\sum a_n$ e considero il rapporto $\frac{a_{n+1}}{a_n}$

Se questo rapporto ha un limite per $n \to +\infty$, allora se il limite è minore di 1 la serie converge, se il limite è uguale a 1 non si può determinare a propri il carattere della serie, se il limite è maggiore di 1 la serie diverge.

6. **Criterio di Weierstrass**: Sia f_n una successione di funzioni limitate: $[a, b] \to \mathbb{R}$. Se esiste una successione numerica $\{a_n\}$ a valori in \mathbb{R} tale che

$$|f_n(t)| \leq a_n \quad \forall t \in [a, b]$$

e per n sufficientemente grande

e tale che $\sum a_n$ converge, allora la serie $\sum f_n$ converge totalmente e uniformemente.

13.1.2 Esercizi

Esercizio 13.1

Considero la serie di funzioni:

$$\sum_{n=0}^{+\infty} (-1)^n \frac{e^{-x^2/n}}{\sqrt{n}}$$

- Studiare la convergenza puntuale
- Studiare la convergenza uniforme
- studiare la convergenza assoluta della serie
- Studiare la convergenza della serie delle derivate per $x \geq 0$.

Convergenza puntuale: Fisso x e ottengo una serie numerica a segni alterni. Verifico se è applicabile il criterio di Leibniz:

1. Per $n \to +\infty$, $e^{-x^2/n} \leq 1$, allora

$$a_n = \frac{e^{-x^2/n}}{\sqrt{n}} \leq \frac{1}{\sqrt{n}} \to 0$$

2. La successione $\{a_n\}$ ha termini positivi.

3. Per provare che la successione è decrescente, definisco una funzione ausiliaria

$$g(x, y) = \frac{e^{-x^2/y}}{\sqrt{y}}$$

Voglio provare che questa funzione è decrescente per y abbastanza grande, allora calcolo la derivata parziale rispetto a y, per x fissato.

$$f'_n = \frac{e^{-x^2/y} * \frac{2x^2}{y^2} * \sqrt{y} - e^{-x^2/y} * 1/2 \frac{\sqrt{y}}{y}}{y}$$
\[f'_n = \frac{e^{-x^2/y}}{y \sqrt{y}} \left[\frac{x^2}{y} - 1/2 \right] \]

\[f'_n = \frac{e^{-x^2/y}}{y^2 \sqrt{y}} \left[x^2 - 1/2y \right] \]

La derivata è positiva se

\[x^2 - 1/2y \leq 0 \]

\[2x^2 - y \leq 0 \]

\[y \geq 2x^2 \]

Per \(y \) abbastanza grande e dipendente da \(x \) (\(y > 2x^2 \)), la quantità è definitivamente decrescente, infatti esiste un indice \(n_0(x) \) tale che \(g(x)_{n+1} < g(x)_n \). Il fatto che l’indice dipende da \(x \) indica che il criterio di Leibniz dà solo informazioni sulla convergenza puntuale, e non su quella uniforme.

Sono soddisfatte le ipotesi del criterio di Leibniz, e quindi per ogni \(x \) c’è convergenza puntuale.

Convergenza uniforme: sappiamo che \(\sum f_n \) converge a una certa \(f(x) \) e che per le proprietà delle serie a segni alterni,

\[|f(x) - s_n| \leq \frac{e^{-x^2/(n+1)}}{\sqrt{n+1}} \]

Quindi

\[\sup_{x \in \mathbb{R}} |f(x) - s_n(x)| \leq \sup_{x \in \mathbb{R}} \frac{e^{-x^2/(n+1)}}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n+1}} \to 0 \text{ per } n \to +\infty \]

Allora si ha convergenza uniforme.

Convergenza assoluta: considero la serie dei moduli:

\[\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}} \cdot e^{-x^2/n} \]

Per \(x \) fissato, \(e^{-x^2/n} \sim 1 \), allora il termine \(n \)-esimo della serie è asintotico a \(\frac{1}{\sqrt{n}} \), e la serie \(\sum \frac{1}{\sqrt{n}} \) non converge.

Convergenza puntuale della serie delle derivate: Derivo il termine \(n \)-esimo della serie:

\[f'_n(x) = \frac{1}{\sqrt{n}} \cdot [-e^{-x^2/n} \cdot 2x/n \cdot (-1)^n] \]

\[f'_n(x) = \frac{(-1)^{n+1}}{\sqrt{n}} \cdot e^{-x^2/n} \cdot 2x/n \]

Verifico se posso applicare Leibniz alla serie \(\sum_n f'_n(x) \):

1. \(a_n = \frac{e^{-x^2/n}}{n\sqrt{n}} \) tende a 0 ed è una successione di funzioni positive.
2. Per dimostrare che la successione è definitivamente decrescente definisco la funzione ausiliaria

\[g(x, y) = \frac{2x \cdot e^{-x^2/y}}{y\sqrt{y}} \]

Derivo rispetto a \(y \).

\[
\frac{\partial f}{\partial y} = \frac{2x \cdot e^{-x^2/y} \cdot \frac{x^2}{y^2} \cdot y\sqrt{y} - 2x \cdot 3/2 \cdot e^{-x^2/y} \cdot y^{1/2}}{y^{5/2}}
\]

\[
= \left(\frac{2x \cdot e^{-x^2/y}}{y^2} \right) \cdot \left(\frac{x^2}{y} - 3/2 \right)
\]

\[x^2/y - 3/2 \leq 0 \]

\[y \geq 2/3x^2 \]

Per \(y \to +\infty \) \(g \) è definitivamente decrescente in \(y \). Allora il termine \(n \)-esimo \(f'_n(x) \) è definitivamente decrescente in \(n \).

Quindi Leibniz è applicabile e c'è convergenza puntuale per \(x > 0 \).

Per la convergenza uniforme, uso la stima del resto \(n \)-esimo, valida per le serie a segni alterni, e chiamo \(u(x) \) la somma della serie: per ogni \(x \)

\[|u(x) - \sum_{k=1}^{n} \frac{(-1)^k}{k\sqrt{k}} \cdot 2x \cdot e^{-x^2/k}| \leq s_{n+1} = \frac{2|x| \cdot e^{-x^2/(n+1)}}{[(n + 1) \cdot \sqrt{n + 1}]} \]

quindi

\[
\sup_{x \in \mathbb{R}} |u(x) - \sum_{k=1}^{n} \frac{(-1)^k}{k\sqrt{k}} \cdot 2x \cdot e^{-x^2/k}| \leq \sup_{x \in \mathbb{R}} s_{n+1} = \sup_{x \in \mathbb{R}} \frac{2x \cdot e^{-x^2/(n+1)}}{[(n + 1) \cdot \sqrt{n + 1}]}
\]

Studio la funzione \(a_{n+1}(x) \) per determinarne il sup:

\[
\sqrt{n+1}(n+1) \ \text{è una costante positiva, allora studio la derivata rispetto a } x \text{ della quantità}
\]

\[r(x) = x \cdot e^{-x^2/(n+1)} \text{ per } x > 0 \]

\[r'(x) = e^{-x^2/(n+1)} - x \cdot e^{-x^2/(n+1)} \cdot \frac{2x}{n + 1} \]

\[r'(x) \geq 0 \]

\[1 - 2x^2/(n + 1) \geq 0 \]

\[\frac{2x^2}{n + 1} - 1 \leq 0 \]

\[x^2 \leq \frac{n + 1}{2} \]
Allora la funzione è crescente per $0 < x < \sqrt{(n+1)/2}$ e assume il suo massimo in $x = \sqrt{(n+1)/2}$, sostituisco questo valore nella funzione per calcolare il massimo:

$$\sup_{x>0} a_{n+1} = \frac{2\sqrt{(n+1)/2} \cdot e^{-1/2}}{|(n+1)\sqrt{n+1}|} = \frac{2\sqrt{2} \cdot e^{-1/2}}{n+1} \to 0 \quad \text{per} \ n \to +\infty$$

Allora il resto n-esimo della serie si può maggiorare indipendentemente da x con una quantità che tende a 0, e quindi c’è convergenza uniforme della serie delle derivate.

Esercizio 13.2

Consideriamo la seguente successione di funzioni:

$$f_n(x) = \frac{1}{n} \cdot \arctan(|x|^n) \quad n \geq 1$$

- trovare l’insieme di convergenza puntuale della successione e verificare se c’è anche convergenza uniforme.
- calcolare

$$\lim_{n \to +\infty} \left| \int_0^{10} f_n(x) \, dx \right|$$

- Considerare la serie

$$\sum_{n=0}^{+\infty} f_n(x)$$

e discuterne convergenza puntuale, uniforme e totale.

Convergenza della successione: Il limite puntuale di questa successione è la funzione nulla, inoltre osserviamo che

$$|f_n(x)| \leq \frac{\pi}{2n} \quad \forall x$$

quindi

$$\sup_{x \in \mathbb{R}} \frac{\arctan(|x|^n)}{n} \leq \frac{\pi}{2n} \to 0 \iff n \to \infty$$

e quindi la funzione converge uniformemente su \mathbb{R}.

Calcolo dell’integrale: Siccome $\{f_n\}$ converge uniformemente per il teorema di passaggio al limite sotto il segno di integrale si ha che il limite da calcolare

\[
\lim_{n \to +\infty} \left[\int_{0}^{10} f_n(x) \, dx \right]
\]
è uguale all’integrale del limite, e quindi a

\[
\int_{0}^{10} f(x) \, dx = 0
\]
essendo l’integrale della funzione nulla.

Convergenza della serie:

\[
\sum \frac{\arctan(|x|^n)}{n}
\]
è una serie a termini positivi.

Suddividiamo l’esercizio in tre casi:

1. Se \(|x| = 1\), allora \(|x|^n = 1\)\(\forall n\) e si ha:

\[
s_n = \sum \arctan 1 * 1/n = \sum \frac{\pi}{4n}
\]
e ha lo stesso carattere della serie armonica che non converge. La serie non converge nemmeno in \(x = -1\).

2. Supponiamo che \(|x| \ge 1\), allora \(|x|^n \ge 1\), e siccome per \(t > 0\) \(\arctan t\) è una funzione crescente, si ha:

\[
\arctan |x|^n > \arctan 1 > \pi/4
\]

Allora la serie che stiamo considerando è maggiore della serie \(\sum \frac{\pi}{4n}\) che non converge, e quindi per il criterio del confronto non c’è convergenza puntuale nemmeno per \(|x| > 1\).

3. Nel caso \(|x| < 1\), usiamo il criterio della radice \(n\)-esima.

\[
L = \lim_{n \to +\infty} \sqrt[n]{a_n} = \\
= \lim_{n \to +\infty} \sqrt[n]{\arctan |x|^n * 1/n} = \\
\text{Siccome} \ |x| < 1 \ , \ |x|^n \ \text{tende a} \ 0, \ \text{e allora l’arcotangente è asintotica al suo} \ \text{argomento, quindi} \\
= \lim_{n \to +\infty} \sqrt[n]{|x|^n * \frac{1}{\sqrt{n}}} = |x| < 1
\]

allora la serie converge puntualmente per il criterio della radice, per \(|x| < 1\).

Commento: Dimostriamo che

\[
\lim_{n \to +\infty} \sqrt[n]{n} = n^{1/n} = 1
\]
\[\sqrt{n} = e^{\log \sqrt{n}} = e^{1/n \log n} \]

E

\[\lim_{n \to \infty} e^{\log n/n} = e^{0} = 1 \]

Convergenza totale della serie: Studio la convergenza totale cioè, verifico che la serie

\[\sum \left[\sup_{x \in (-1,1)} \arctan |x|^n * 1/n \right] \]

cconverge.

Non c’è convergenza totale, infatti l’arcotangente è crescente, e quindi per \(|x| < 1\) il sup è \(\frac{\pi}{4n}\) e ottengo quindi una serie non convergente.

Però c’è convergenza totale in ogni intervallo del tipo \((-a,a)\) con \(0 < a < 1\). Infatti, siccome l’arcotangente è crescente in \((0,1)\), essa assume il sup in \(x = a\) nell’intervallo \((-a,a)\), allora

\[\sum \left[\sup_{x \in (-a,a)} \arctan \left(\frac{|x^n|}{n} \right) \right] = \sum \frac{\arctan |a|^n}{n} \]

e allora applicando il criterio della radice come nel caso sopra, siccome \(a^n < 1\) la serie converge.

Esercizio 13.3

Considerare la serie

\[\sum \frac{(n!)^x}{(2n)!} \]

1. Studiare la convergenza puntuale.

2. Studiare la convergenza totale della serie.

Convergenza puntuale: Ho una serie a termini positivi, uso il criterio del rapporto e considero il limite:

\[\lim_{n \to +\infty} \frac{((n+1)!)^x}{2(n+1)!} * \frac{(2n)!}{(n!)^x} = \]

\[\lim_{n \to +\infty} \frac{2n+2}{2(n+1)}(2n+1) * \frac{(2n)!}{(n!)^x} = \]

\[\lim_{n \to +\infty} \frac{(n+1)^x}{(2n+2)(2n+1)} = \]

Osservo che \(2n + 2 = 2(n+1)\) quindi

\[\lim_{n \to +\infty} \frac{(n+1)^{x-1}}{2(2n+1)} = \]
Considero i tre casi seguenti:

1. Se \(x = 2 \), la serie converge, infatti l’esponente vale 1 e si ottiene:
 \[
 \lim_{n \to +\infty} \frac{n + 1}{2(2n + 1)} = 1/4 < 1
 \]

2. Se \(x > 2 \) la serie non converge, infatti
 \[
 \lim_{n \to +\infty} \frac{(n + 1)^{x-1}}{2(2n + 1)}
 \]
 \[
 \lim_{n \to +\infty} \frac{n^{x-1}}{4n} = \frac{n^{x-2}}{4} = +\infty > 1
 \]

3. Per \(x < 2 \) si ha convergenza, infatti
 \[
 \lim_{n \to +\infty} \frac{n^{x-1}}{4n} = \frac{n^{x-2}}{4} = 0 < 1
 \]

Per concludere, la serie converge puntualmente nell’insieme \(\{x \leq 2\} \).

Convergenza totale: si può avere convergenza uniforme in sottoinsiemi di \(\{x \leq 2\} \).

\[
\sum_{n=0}^{+\infty} \left[\sup_{x \leq 2} (n!)^x \right] / (2n)! \]

Osservo che \((n!)^x\) assume il suo sup in \(x = 2 \) perché \(n! \geq 1 \), quindi \((n!)^x\) è una funzione crescente in \(x \). Di conseguenza la serie delle norme è

\[
\sum_{n} (n!)^2 / (2n)! \]

e da quanto detto prima la serie converge (criterio del rapporto, limite 1/4). Quindi la serie converge totalmente e uniformemente in \(\{x \leq 2\} \).

Esercizio 13.4

Considerare la serie:

\[
\sum_{n=2}^{\infty} \left[\frac{1}{2n} \log(1 + n^2 x^2) - \frac{1}{2} \right] \cdot \log(1 + (n + 1)^2 x^2) \]

(sì nota subito che la serie è telescopica con termine generale \(f_n(x) = g_n(x) + g_{n+1}(x) \), con \(g_n(x) = \frac{1}{2n} \log(1 + n^2 x^2) \)) Dimostrare che questa serie è derivabile termine a termine, anche se la serie delle derivate non converge uniformemente.

Convergenza puntuale:
Consideriamo la successione
\[s_n(x) = \sum_{k=1}^{n} f_k(x) = \sum_{k=1}^{n} g_k(x) - g_{k+1}(x) = g_1(x) - g_2(x) + g_2(x) - g_3(x) + g_3(x) + \cdots + g_k(x) - g_{k+1}(x) = g_1(x) \]

Allora la ridotta \(n \)-esima della serie si può scrivere esplicitamente come:

\[s_n(x) = 1/2 \cdot \log(1 + x^2) - \frac{1}{2(n + 1)} \cdot \log(1 + \frac{n+1}{2}x^2) \]

\(1/2 \cdot \log(1 + x^2) \) è una costante. Allora calcolo

\[\lim_{n \to +\infty} \frac{1}{2(n + 1)} \cdot \log(1 + \frac{n+1}{2}x^2) = \]

Se \(x = 0 \), \(g_n(0) = 0 \) \(\forall n \). Se \(x \neq 0 \), \(x^2 \geq 0 \), allora \(n^2x^2 \to +\infty \), ma il denominatore prevale, perché c’è una quantità lineare che tende a infinito, mentre il numeratore ha ordine logaritmico, allora il limite vale 0. Quindi la successione delle ridotte \(n \)-esime converge puntualmente alla funzione limite \(1/2 \log(1 + x^2) \).

Serie delle derivate: La somma della serie \(S(x) \) è derivabile, e

\[S'(x) = \frac{x}{1 + x^2} \]

Invece la serie delle derivate è

\[\sum_{n=1}^{+\infty} S'_n(x) = \]

\[= \sum_{n=1}^{+\infty} \frac{1}{2n \cdot (1 + n^2x^2)} \cdot 2n^2x - \frac{2 \cdot (n+1)^2x}{2 \cdot (n+1)(1 + (n+1)^2x^2)} \]

\[= \sum_{n=1}^{+\infty} \frac{nx}{1 + n^2x^2} - \frac{(n+1)x}{1 + (n+1)^2x} \]

e ottengo nuovamente una serie telescopica con termine \(n \)-esimo \(h_n(x) - h_{n+1}(x) \),

\[h_n(x) = \frac{nx}{1 + n^2x^2} \]. Allora si può esplicitare la somma della successione delle ridotte \(n \)-esime \(U_n(x) \).

\[U_n(x) = h_1(x) - h_{n+1}(x) = \frac{x}{1 + x^2} - \frac{(n+1)x}{1 + (n+1)^2x^2} \]

Per studiare la convergenza puntuale, calcolo:

\[\lim_{n \to +\infty} \frac{(n+1)x}{1 + (n+1)^2x^2} \]

Per \(x = 0 \) il limite vale 0, perché \(h_{n+1}(x) = 0 \). Se \(x \neq 0 \) ottengo

\[\lim_{n \to +\infty} \frac{1}{(n+1)x} = 0 \]
e la serie converge puntualmente a \(g = \frac{x}{1+x^2} \), che è la derivata della somma della serie originaria.

Convergenza uniforme della somma della serie delle derivate:

Bisogna verificare che la serie delle derivate non converge uniformemente, cioè che

\[
\sup_{x \in \mathbb{R}} |u(x) - s'_n(x)| \geq \epsilon
\]

Siccome \(s'_n(x) \) converge a \(\frac{x}{1+x^2} \) basta valutare

\[
\sup_{x \in \mathbb{R}} \left| \frac{(n+1)x}{1+(n+1)^2x^2} \right|
\]

Siccome dobbiamo dimostrare che la serie non converge uniformemente, cerchiamo una minorante di questa quantità:

\[
\sup_{x \in \mathbb{R}} |s'_n(x) - u'(x)| \geq \sup_{x \in \mathbb{R}} \left| \frac{(n+1)x}{1+(n+1)^2x^2} \right| \geq \left| \frac{(n+1)\bar{x}}{1+(n+1)^2(\bar{x})^2} \right| \forall \bar{x} \in \mathbb{R}
\]

Quindi scelgo un \(\bar{x} \) qualsiasi; ad esempio, per \(\bar{x} = \frac{1}{2\pi} \) l’estremo superiore del resto \(n \)-esimo è \(\geq 1/2 \), e non tende a 0 e quindi non c’è convergenza uniforme.

Esercizio 13.5

Si determinino gli insiemi di convergenza puntuale e uniforme della serie di funzioni \(\sum_{n=0}^{\infty} f_n(x) \), dove \(f_n : (-\pi/2, \pi/2) \to \mathbb{R} \), \(f_n(x) = (\sin x)^{n+1}(\cos x)^{-n} \).

Convergenza puntuale: osservo che

\[
\sum_{n} f_n(x) = \sum_{n} \sin x \cdot \left(\frac{\sin x}{\cos x}\right)^n = \sum_{n} \sin x \cdot (\tan x)^n
\]

Per \(-\pi/4 < x < \pi/4 \) si ha \(\tan x < 1 \), e ottengo la serie geometrica di ragione minore di 1, che converge. Al di fuori di questo intervallo non si ha convergenza puntuale.

Studio la **convergenza uniforme** in sottointervalli \([-a,a]\) contenuti in \((-\pi/4, \pi/4)\). In questo caso è applicabile il criterio di Weierstrass, perché per ogni \(x \in [-a,a] \), il termine generale della serie è minorato dalla serie numerica \(\sin a \cdot (\tan a)^n \), che converge essendo la serie geometrica di ragione \(\tan a < 1 \) per \(a < \pi/4 \). Allora si ha convergenza uniforme in ogni intervallo del tipo \([-a,a]\) con \(a < \pi/4 \).

13.2 Serie di potenze

13.2.1 Richiami teorici

definizione Le serie di potenze sono del tipo
\[\sum a_n (x - x_0)^n \]

con \(\{a_n\} \) successione numerica positiva, e ponendo \(y = x - x_0 \) si ottiene la serie \(\sum a_n y^n \) centrata in \(0 \).

convergenza puntuale La serie di potenze centrata in \(0 \) converge in un intervallo simmetrico rispetto a \(0 \) del tipo \((-b, b)\) con \(b \geq 0 \). In particolare se \(b = 0 \) la serie converge solo nel punto \(x = 0 \), mentre se \(b = \infty \) la serie converge ovunque. La convergenza è sempre garantita nell’intervallo aperto \((-b, b)\) ma non è noto il comportamento della serie negli estremi dell’intervallo.

convergenza uniforme la serie converge uniformemente e totalmente in ogni sottointervallo del tipo \([-d, d]\) con \(0 < d < b \), e la somma della serie di potenze è di classe \(C_\infty \).

teorema di Abel Supponiamo di sapere che nel punto \(x = b \) c’è convergenza. Allora c’è convergenza uniforme in tutto l’intervallo \([0, b]\) estremi inclusi.

Il raggio di convergenza \(b \) è tale che \(b = 1/\beta \) con

\[\beta = \limsup_{n \to +\infty} \sqrt[n]{|a_n|}, \quad \text{criterio della radice} \]

o alternativamente \(b = 1/\alpha \) con

\[\alpha = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n}, \quad \text{criterio del rapporto} \]

13.2.2 Esercizi

Esercizio 13.6

Studiare convergenza puntuale e uniforme della serie:

\[\sum_{n=0}^{\infty} \frac{n!}{n^n} x^n \]

Per determinare il raggio di convergenza applico il criterio del rapporto.

\[1/r = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \]

\[1/r = \lim_{n \to +\infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \]
\[
\frac{1}{r} = \lim_{n \to +\infty} \frac{(n+1) \cdot n!}{(n+1)^n \cdot (n+1)} \cdot \frac{n^n}{n!} =
\]

\[
\frac{1}{r} = \lim_{n \to +\infty} \frac{n^n}{n!} =
\]

\[
\frac{1}{r} = \lim_{n \to +\infty} \frac{1}{[(n+1)/n]^n} =
\]

\[
\frac{1}{r} = \lim_{n \to +\infty} \frac{1}{[1/(n+1)]^n} = \frac{1}{e}
\]

quindi \(r = e \) (ricordare che \(1^\infty \) è una forma di indecisione, e che vale il limite notevole \((1 + \varepsilon_n)^{1/\alpha_n} = e^\alpha \) con \(\varepsilon_n \to 0 \)).

Di conseguenza la convergenza puntuale è garantita in \((-e, e)\). Studio i casi \(x = \pm e \).

\[
x = e \quad \rightarrow \quad s = \sum \frac{n!}{n^n} \cdot e^n
\]

Applico il criterio del rapporto alla serie ottenuta

\[
\lim_{n \to +\infty} \frac{(n+1)! \cdot e^{n+1}}{(n+1)^{n+1}} \cdot \frac{n^n}{n! \cdot e^n} =
\]

\[
\lim_{n \to +\infty} \frac{(n+1) \cdot n! \cdot e^n \cdot e}{(n+1)^n \cdot (n+1)} \cdot \frac{n^n}{n! \cdot e^n} =
\]

\[
\lim_{n \to +\infty} \frac{e}{(1 + 1/n)^n} =
\]

Considero il fatto che:

\[
\lim_{n \to +\infty} (1 + 1/n)^n = e
\]

\((1 + 1/n)^n < e \) perché la successione è crescente. Allora \(b_{n+1} > b_n \) e la serie non converge.

Lo stesso vale per \(x = -e \).

Quindi c'è convergenza puntuale nell'intervallo \((-e, e)\), e quindi la serie converge uniformemente in ogni intervallo del tipo \([-a, a] \) con \(a < e \).

Esercizio 13.7

Considerare la serie

\[
\sum_{n=0}^{+\infty} \frac{(-x)^n}{3n + \log n}
\]

e studiarne la convergenza.

La serie data è una serie di potenze con \(a_n = \frac{(-1)^n}{3n + \log n} \)

Applico il criterio del rapporto:
\[1/r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{3n + \log n}{3(n + 1) + \log(n + 1)} = \]

Osservo che per \(n \to \infty \), \(3n + \log n \sim 3n \), \(3(n + 1) + \log(n + 1) \sim 3n \), quindi il limite vale 1, e \(r = 1 \).

Per \(x = 1 \) ottengo la serie \(\sum (-1)^n \frac{3n + \log n}{3n+1} \), che converge per il criterio di Leibniz: infatti è una serie a segni alterni, con termine generale definitivamente positivo e tendente a 0, e decrescente.

Per \(x = -1 \), si ottiene la serie

\[\sum_n (-1)^n \frac{1}{\log n + 3n} = \sum_n \frac{1}{\log n + 3n} \]

e siccome \(\log n + 3n \sim 3n \), questa serie ha lo stesso carattere della serie armonica, che non converge.

Si conclude che c’è convergenza puntuale in \((-1, 1]\), c’è convergenza uniforme in ogni intervallo del tipo \([-a, a]\) con \(|a| < 1\), inoltre per il teorema di Abel, siccome la serie converge puntualmente in \(x = 1\), allora converge uniformemente in \([0, 1]\). Allora c’è convergenza uniforme in tutti gli intervalli del tipo \([-a, 1]\).

Osservazione 13.1

Dimostriamo un risultato generale. Considero la funzione \(s(x) \), somma di una serie in \((-d, d]\). Supponiamo che ci sia convergenza uniforme in \([-a, a]\) e che il teorema di Abel garantisca anche la convergenza in \([0, d]\). Verifichiamo che allora c’è convergenza uniforme in ogni intervallo del tipo \([-a, d]\).

Dimostrazione

Dimostrare che c’è convergenza uniforme equivale a mostrare che:

\[\sup_{x \in [-a,d]} |s_n(x) - s(x)| \to 0 \]

Sappiamo che:

\[\sup_{x \in [-a,d]} |s_n(x) - s(x)| \leq \sup_{x \in [-a,a]} |s_n(x) - s(x)| + \sup_{x \in [0,d]} |s_n(x) - s(x)| \]

e sappiamo che le due quantità al secondo membro tendono a 0, perché c’è convergenza uniforme in \([-a, a]\) e in \([0, d]\) per ipotesi. Allora anche il primo membro tende a 0.

Questo ragionamento è applicabile per tutte le serie.

Esercizio 13.8

Calcolare
\[
\int_0^1 \frac{\arctan x}{x} \, dx
\]

Sappiamo che
\[
(\arctan x)' = \frac{1}{1 + x^2} = \frac{1}{1 - (-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n
\]
dove nell’ultimo passaggio si tiene conto che \(1/(1 - q)\) è somma della serie geometrica di radice \(q\) per \(|q| < 1\), ponendo \(q = -x^2\) e \(|x| < 1\).

Le serie di potenze si possono integrare termine a termine, allora, per ogni \(x \in (-1, 1)\):
\[
\int_0^x (\arctan t)' \, dt = \int_0^x [\sum_n (-t^2)^n] \, dt = \int_0^x [\sum_n (-1)^n t^{2n}] \, dt
\]
La serie \(\sum_n (-1)^n t^{2n}\) converge uniformemente in \([-x, x]\) con \(|x| < 1\), allora vale che l’integrale della serie è la serie dell’integrale, quindi possiamo scrivere che:
\[
\int_0^x (\arctan t)' \, dt = \sum_n (-1)^n [\int_0^x t^{2n} \, dt] = \sum_n (-1)^n \frac{x^{2n+1}}{2n+1}
\]
Ma sappiamo che
\[
\int_0^x (\arctan x)' \, dx = \arctan x
\]
Allora
\[
\arctan x = (-1)^{2n} * \frac{x^{2n+1}}{2n+1}
\]
Allora
\[
\frac{\arctan x}{x} = (-1)^{n} * \frac{x^{2n}}{2n+1}
\]
Quest’ultima serie converge in \(x = 1\) per il criterio di Leibniz, allora per il teorema di Abel c’è convergenza uniforme in \([0, 1]\).

Allora, sostituendo ad \(\frac{\arctan x}{x}\) la sua espressione, calcolo l’integrale richiesto:
\[
\int_0^1 \frac{\arctan x}{x} \, dx = \int_0^1 [\sum (-1)^n \frac{x^{2n}}{2n+1}] \, dx = \sum [\int_0^1 (-1)^n * \frac{x^{2n}}{2n+1}] \, dx = \sum \frac{1}{(2n+1)^2}
\]
Riassumendo:
1. ho scritto \((\arctan x)'\) come somma di una serie;

2. dal teorema del passaggio al limite sotto il segno di integrale valido per le serie, ho scritto anche \(\frac{\arctan x}{x}\) come somma di una serie.

3. ho calcolato l’integrale richiesto sfruttando ancora lo stesso teorema, dopo aver verificato che la serie somma di \(\frac{\arctan x}{x}\) converge in \(x = 1\)

Esercizio 13.9

Studiare l’insieme di convergenza della serie

\[
\sum \frac{\log(1 + n^\alpha)}{\sqrt{n}} \cdot x^n
\]

con \(\alpha\) parametro reale.

Calcolo il raggio di convergenza usando il criterio del rapporto, tenendo conto che:

1. se \(\alpha > 0\) il logaritmo tende a \(\infty\),
2. se \(\alpha = 0\) ottenno \(\log(1 + n^\alpha) = 2\)
3. se \(\alpha < 0\),
\[
\log(1 + n^\alpha) = \log(1 + n^{-\beta})\beta > 0 = \log(1 + \frac{1}{n^\beta}) \sim \frac{1}{n^\beta}
\]

caso 1 \(\alpha > 0\)

\[
\left| \frac{a_{n+1}}{a_n} \right| = \\
= \frac{\log(1 + (n + 1)^\alpha)}{\sqrt{n + 1}} \cdot \frac{\sqrt{n}}{\log(1 + n^\alpha)} \Rightarrow
\]

ma per \(n \to \infty\), \(\sqrt{n + 1} \sim \sqrt{n}\), \(\log(1 + n^\alpha) \sim \log n^\alpha\),

\[
= \frac{\log((n + 1)^\alpha)}{\log(n^\alpha)} = 1 \iff n \to \infty
\]

e l’insieme di convergenza contiene \((-1, 1)\).

Studio la convergenza in \(x = 1\).

\[
\log(1 + n^\alpha) \geq \log 2
\]

Allora la serie in \(x = 1\) è maggiore della serie

\[
\sum \frac{\log 2}{\sqrt{n}}
\]

che non converge.
In \(x = -1 \) ho una serie a segni alterni e per poter applicare Leibniz, dimostrò che è decrescente, definisco quindi la funzione:

\[
g(x, y) = \frac{\log(1 + y^\alpha)}{\sqrt{y}}
\]

\[
\frac{\partial g}{\partial y} = \frac{1}{\sqrt{y}} \cdot \frac{1}{1 + y^\alpha} - 3/2 \cdot \log(1 + y^\alpha) \cdot y^{-3/2}
\]

\[
= \frac{1}{y^{3/2}} \cdot \left[\frac{\alpha \cdot y^\alpha}{1 + y^\alpha} - 3/2 \cdot \log(1 + y^\alpha) \right]
\]

Cerco il denominatore comune:

\[
= \frac{1}{2y^{3/2} \cdot (1 + y^\alpha)} \cdot \left[2\alpha \cdot y^\alpha - 3 \cdot (1 + y^\alpha) \cdot \log(1 + y^\alpha) \right]
\]

Il denominatore è positivo per \(y \to +\infty \), studio la positività del numeratore:

\[
2\alpha \cdot y^\alpha - 3 \cdot (1 + y^\alpha) \cdot \log(1 + y^\alpha) \geq 0
\]

\[
2\alpha \cdot y^\alpha - 3 \cdot (1 + y^\alpha) - y^\alpha \cdot \log(1 + y^\alpha) \geq 0
\]

\[
\lim_{y \to +\infty} [2\alpha - \log(1 + y^\alpha)] \cdot y^\alpha - 3 \cdot \log(1 + y^\alpha) = \log(1 + y^\alpha) \sim \log(y^\alpha) = \alpha \cdot \log y
\]

\[
\lim_{y \to +\infty} [2 - \log(y)] \cdot \alpha \cdot y^\alpha - 3\alpha y = -\infty
\]

Allora per \(y \to +\infty \) la derivata è definitivamente negativa, e la serie di partenza è definitivamente decrescente, allora il criterio di Leibniz è applicabile e la serie converge in \(x = -1 \).

Caso 2 \(\alpha = 0 \). In questo caso la serie diventa:

\[
\sum \frac{\log 2}{\sqrt{n}} \cdot x^n
\]

Criterio del rapporto:

\[
1/r = \lim_{n \to +\infty} \frac{\log 2}{\sqrt{n + 1}} \cdot \frac{\sqrt{n}}{\log 2} = 1
\]

e si ottiene nuovamente \(r = 1 \).

In \(x = 1 \) la serie non converge, perché è la serie armonica generalizzata con \(\alpha = 1/2 \). Invece per \(\alpha = -1 \) ottengo la serie a segni alterni:

\[
\sum (-1)^n \cdot \frac{\log 2}{\sqrt{n}}
\]

che è a termini positivi, ha termine generale tendente a 0 ed è decrescente, quindi converge per Leibniz.
13.3 Serie di Fourier

Supponiamo di avere una funzione periodica di periodo $2t$ integrabile su tutto il periodo $(-t, t)$. Allora è possibile associare ad $f(x)$ la sua serie di Fourier del tipo

$$
a_0/2 + \sum_{n=0}^{\infty} \left[a_n \cos \left(\frac{\pi n}{t} x \right) + b_n \sin \left(\frac{\pi n}{t} x \right) \right]
$$

con

$$
a_n = \frac{1}{t} \int_{-t}^{t} f(x) \cos \left(\frac{\pi n}{t} x \right) \, dx
$$

$$
b_n = \frac{1}{t} \int_{-t}^{t} f(x) \sin \left(\frac{\pi n}{t} x \right) \, dx
$$

Esercizio 13.10

Sviluppare in serie di Fourier la funzione periodica di periodo 6 definita da

$$f(x) = |x|, \ x \in (-3, 3)
$$

Dimostrare che

$$\sum \frac{1}{(2n-1)^2} = \pi^2/8
$$

Questa funzione assume il valore 3 in $x = \pm 3$. Per periodicità, faccio una copia della funzione $|x| \in (-3, 3)$ in ogni intervallo del tipo $(-3 + 3k, 3 + 3k) \ k \in \mathbb{Z}$.

Calcolo i coefficienti di Fourier. Osservo che $f(x) = f(-x)$ quindi f è pari e moltiplicata per una funzione dispari è dispari, $f(x) \sin \left(\frac{\pi n}{3} x \right)$ è dispari, e il suo integrale in $(-t, t)$ è nullo, cioè $b_n = 0$.

$$a_0 = 1/3 \int_{-3}^{3} |x| \cos 0 \, dx = 2/3 \int_{0}^{3} |x| \, dx = 2/3 \left[\frac{x^2}{2} \right]_0^3 = [x^2/3]_0^3 = 9/3 = 3
$$

$$a_n = 1/3 \int_{-3}^{3} |x| \cos \left(\frac{\pi n}{3} x \right) \, dx = 2/3 \int_{0}^{3} |x| \cos \left(\frac{\pi n}{3} x \right) \, dx =
$$

e siccome sto integrando una funzione pari su un dominio simmetrico:

$$a_n = 2/3 \int_{0}^{3} |x| \cos \left(\frac{\pi n}{3} x \right) \, dx =
$$

Cambio di variabile:

$$\frac{\pi n}{3} x = t$$
\[x = \frac{3}{\pi n} t \]
\[dx = \frac{3}{\pi n} dt \]

Se \(x = 0, \ t = 0 \), se \(x = 3, \ t = \pi n \).

\[a_n = \frac{2}{3} \cdot \int_0^{\pi n} \frac{9}{\pi^2 n^2} \cdot t \cdot \cos dt = \frac{6}{\pi^2 n^2} \cdot \int_0^{\pi n} t \cdot \cos dt = \]

Integro per parti, ponendo:

\[f(x) = t, \quad f'(x) = 1, \quad g(x) = \sin t, \quad g'(x) = \cos t \]

allora

\[\int_0^{\pi n} t \cdot \cos dt = [t \cdot \sin]_0^{\pi n} - \int_0^{\pi n} \sin t dt = 0 + [\cos t]_0^{\pi n} \]

\[= \begin{cases} 0 & \iff n = 2k \\ -2 & \iff n = 2k - 1 \end{cases} \]

allora per \(n \) dispari l'integrale di partenza vale:

\[a_n = \frac{-12}{\pi^2 n^2} = -\frac{12}{(2k - 1)^2 \pi^2} \]

e la somma della serie di Fourier considerata è

\[f(x) = \frac{3}{2} + \sum_{k=1}^{+\infty} \frac{-12}{\pi^2 (2k - 1)^2} \cos(\pi(2k - 1)x/3) \]

C'è convergenza puntuale su \(\mathbb{R} \), allora

\[f(x) = |x| = \frac{3}{2} - \frac{12}{\pi^2} \cdot \sum_{k=1}^{+\infty} \frac{1}{(2k - 1)^2} \cos(\pi(2k - 1)x/3) \]

\[f(0) = 0 = \frac{3}{2} - \frac{12}{\pi^2} \cdot \sum_{k=1}^{+\infty} \frac{1}{(2k - 1)^2} \]

Segue quindi che

\[\sum_{k=1}^{+\infty} \frac{1}{(2k - 1)^2} = \frac{3\pi^2}{24} = \pi^2/8 \]
Capitolo 14

Fonti per testo e immagini; autori; licenze

14.1 Testo

- Corso: Esercizi di Analisi II I1/Limiti di funzioni in più variabili/Richiami teorici
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Limiti_di_funzioni_in_pi%C3%B9_variabili/Richiami_teorici?oldid=44695 Contributori: Mmontrasio

- Corso: Esercizi di Analisi II I1/Limiti di funzioni in più variabili/Calcolo di limiti
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Limiti_di_funzioni_in_pi%C3%B9_variabili/Calcolo_di_limiti?oldid=48510 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

- Corso: Esercizi di Analisi II I1/Limiti di funzioni in più variabili/Punti di discontinuità
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Limiti_di_funzioni_in_pi%C3%B9_variabili/Punti_di_discontinuit%C3%A0?oldid=48055 Contributtori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

- Corso: Esercizi di Analisi II I1/Differenziabilità/Richiami teorici
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Differenziabilit%C3%A0/Richiami_teorici?oldid=44737

- Corso: Esercizi di Analisi II I1/Differenziabilità/Calcolo di derivate parziali e regola della catena
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Differenziabilit%C3%A0_di_funzioni_generiche?oldid=48018 Contributtori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

- Corso: Esercizi di Analisi II I1/Differenziabilità/Differenziabilità di funzione dipendenti da un parametro
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Differenziabilit%C3%A0_di_funzione_dipendenti_da_un_parametro?oldid=48073 Contributtori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

- Corso: Esercizi di Analisi II I1/Studio di punti critico/Richiami teorici
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Studio_di_punti_critico/Richiami_teorici?oldid=48440 Contributtori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

- Corso: Esercizi di Analisi II I1/Equazioni differenziali/Equazioni differenziali di primo ordine
 Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Equazioni_differenziali/Equazioni_differenziali_di_primo_ordine?oldid=48430 Contributtori: Toma.luca95, ScimmiaSpaziale e Mmontrasio
Corso: Esercizi di Analisi II I1/Equazioni differenziali/Equazioni differenziali miste Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Equazioni_differenziali/Equazioni_differenziali_miste?oldid=48491 Contributo: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso: Esercizi di Analisi II I1/Equazioni differenziali/Esistenza e unicità delle soluzioni Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Equazioni_differenziali/Esistenza_e_unicit%C3%A0_delle_soluzioni?oldid=48411 Contributo: Toma.luca95, V.e.padulano, ScimmiaSpaziale e Mmontrasio

Corso: Esercizi di Analisi II I1/Equazioni differenziali/Equazioni differenziali di ordine n Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Equazioni_differenziali/Equazioni_differenziali_di_ordine_n?oldid=48028 Contributo: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso: Esercizi di Analisi II I1/Curve/Richiami teorici Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Curve/Richiami_teorici?oldid=44766 Contributo: Mmontrasio

Corso: Esercizi di Analisi II I1/Curve/Calcolo di integrali curvilinei Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Curve/Calcolo_di_integrali_curvilinei?oldid=48407 Contributo: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso: Esercizi di Analisi II I1/Teorema della funzione implicita/Teorema della funzione implicita/Richiami teorici Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Teorema_della_funzione_implicita/Richiami_teorici?oldid=44765 Contributo: Mmontrasio
Corso:Esercizi di Analisi II I1/Integrali multipli/Richiami teorici Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Integrali_multipli/Richiami_teorici?oldid=44749 Contributori: Mmontrasio

Corso:Esercizi di Analisi II I1/Integrali multipli/Integrali doppi Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Integrali_multipli/Integrali_doppi?oldid=48343 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso:Esercizi di Analisi II I1/Integrali multipli/Integrali doppi con cambio di variabili Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Integrali_multipli/Integrali_doppi_con_cambio_di_variabili?oldid=48045 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso:Esercizi di Analisi II I1/Integrali multipli/Esercizi difficili Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Integrali_multipli/Esercizi_difficili?oldid=48087 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso:Esercizi di Analisi II I1/Teoremi di Green Stokes e della divergenza/-Richiami teorici Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Teoremi_di_Green_Stokes_e_della_divergenza/Richiami_teorici?oldid=44769 Contributori: Mmontrasio

Corso:Esercizi di Analisi II I1/Teoremi di Green Stokes e della divergenza/-Teoremi di Green Stokes e della divergenza Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Teoremi_di_Green_Stokes_e_della_divergenza/Teoremi_di_Green_Stokes_e_della_divergenza?oldid=48240 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso:Esercizi di Analisi II I1/Successioni/Richiami teorici Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Successioni/Richiami_teorici?oldid=44747 Contributori: Mmontrasio

Corso:Esercizi di Analisi II I1/Successioni/Successioni Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Successioni/Successioni?oldid=48590 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

Corso:Esercizi di Analisi II I1/Serie/Serie generiche Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Serie/Serie_generiche?oldid=48489 Contributori: Toma.luca95 e Mmontrasio

Corso:Esercizi di Analisi II I1/Serie/Serie di potenze Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Serie/Serie_di_potenze?oldid=48155 Contributori: Toma.luca95, Irenee e Mmontrasio

Corso:Esercizi di Analisi II I1/Serie/Serie di Fourier Fonte: https://it.wikitolearn.org/Corso%3AEsercizi_di_Analisi_II_I1/Serie/Serie_di_Fourier?oldid=48061 Contributori: Toma.luca95, ScimmiaSpaziale e Mmontrasio

14.2 Immagini

14.3 Licenza dell’opera

- [Project:Copyright Creative Commons Attribution Share Alike 3.0 & GNU FDL]
- Creative Commons Attribution-Share Alike 3.0