Introduzione alla meccanica lagrangiana

La meccanica newtoniana è un ottimo studio dei sistemi meccanici e, tramite una strutturazione lineare e concisa, descrive appieno la realtà che ci circonda. Tuttavia, per sistemi particolari, utilizzare la meccanica newtoniana può rilevarsi una tortura. Questi sono i casi in cui sono presenti sistemi vincolati: il sistema si evolve nel tempo, variando le sue caratteristiche spaziali, ma queste sono vincolate a soddisfare equazioni particolari. Per questo motivo, a volte, utilizzare la meccanica newtoniana comporta uno studio lungo e faticoso, e non sempre diventa possibile scrivere le equazioni del moto.

L'obiettivo del formalismo lagrangiano è, invece, riuscire a studiare un sistema che si evolve nel tempo trascurando i vincoli; questo è possibile attraverso variabili che includano i vincoli nella loro stessa definizione, chiamate variabili lagrangiane. Queste variabili non sono sempre variabili spaziali: possono anche avere dimensioni totalmente diverse. Facciamo un esempio, per capire meglio.

Consideriamo un punto materiale che è vincolato a muoversi lungo una guida circolare che soddisfa l'equazione . Si chiede di determinare la posizione del punto materiale in ogni tempo, ovvero si richiede di scrivere le equazioni del moto.

Già da primo impatto, non sembra una cosa davvero facile, se si considerano come variabili e . Per poter scrivere le equazioni del moto, dobbiamo scrivere la relazione . Il problema sorge quando dobbiamo includere il vincolo: la reazione vincolare della guida, infatti, non è un valore fisso, ma varia a seconda della velocità del punto materiale. Quindi diventa particolarmente complicato riuscire a ricavare le equazioni del moto.

Se invece consideriamo come variabile del moto (ovvero l'angolo di rotazione) non serve calcolare forze vincolari: ad ogni tempo sappiamo dove si trova il nostro punto materiale. In questo caso, è una variabile lagrangiana. Inoltre, non ha dimensioni spaziali ma, essendo un angolo, è un numero adimensionale. Questo dimostra come, cambiando variabile di studio, che non abbia per forza le stesse dimensioni delle precedenti, si riesca a studiare il sistema al meglio e in maniera semplice. Inoltre, si presti attenzione al fatto che, se prima si avevano due variabili corrispondenti a due gradi di libertà, ora ne abbiamo solo una. Nel prossimo capitolo approfondiremo la questione delle variabili lagrangiane.

In tutto i suoi passi, lo scopo della meccanica lagrangiana è proprio semplificare lo studio di sistemi meccanici vincolati che evolvono nel tempo.

Successivo